• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 8
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 14
  • 14
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Koncepty strojového učení pro kategorizaci objektů v obrazu / Machine Learning Concepts for Categorization of Objects in Images

Hubený, Marek January 2017 (has links)
This work is focused on objects and scenes recognition using machine learning and computer vision tools. Before the solution of this problem has been studied basic phases of the machine learning concept and statistical models with accent on their division into discriminative and generative method. Further, the Bag-of-words method and its modification have been investigated and described. In the practical part of this work, the implementation of the Bag-of-words method with the SVM classifier was created in the Matlab environment and the model was tested on various sets of publicly available images.
42

Porovnání klasifikačních metod / Comparison of Classification Methods

Dočekal, Martin January 2019 (has links)
This thesis deals with a comparison of classification methods. At first, these classification methods based on machine learning are described, then a classifier comparison system is designed and implemented. This thesis also describes some classification tasks and datasets on which the designed system will be tested. The evaluation of classification tasks is done according to standard metrics. In this thesis is presented design and implementation of a classifier that is based on the principle of evolutionary algorithms.
43

Automatické třídění fotografií podle obsahu / Automatic Photography Categorization

Veľas, Martin January 2013 (has links)
This thesis deals with content based automatic photo categorization. The aim of the work is to experiment with advanced techniques of image represenatation and to create a classifier which is able to process large image dataset with sufficient accuracy and computation speed. A traditional solution based on using visual codebooks is enhanced by computing color features, soft assignment of visual words to extracted feature vectors, usage of image segmentation in process of visual codebook creation and dividing picture into cells. These cells are processed separately. Linear SVM classifier with explicit data embeding is used for its efficiency. Finally, results of experiments with above mentioned techniques of the image categorization are discussed.

Page generated in 0.0511 seconds