• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Toward Robust Information Extraction Models for Multimedia Documents

Ebadat, Ali-Reza 17 October 2012 (has links) (PDF)
Au cours de la dernière décennie, d'énormes quantités de documents multimédias ont été générées. Il est donc important de trouver un moyen de gérer ces données, notamment d'un point de vue sémantique, ce qui nécessite une connaissance fine de leur contenu. Il existe deux familles d'approches pour ce faire, soit par l'extraction d'informations à partir du document (par ex., audio, image), soit en utilisant des données textuelles extraites du document ou de sources externes (par ex., Web). Notre travail se place dans cette seconde famille d'approches ; les informations extraites des textes peuvent ensuite être utilisées pour annoter les documents multimédias et faciliter leur gestion. L'objectif de cette thèse est donc de développer de tels modèles d'extraction d'informations. Mais les textes extraits des documents multimédias étant en général petits et bruités, ce travail veille aussi à leur nécessaire robustesse. Nous avons donc privilégié des techniques simples nécessitant peu de connaissances externes comme garantie de robustesse, en nous inspirant des travaux en recherche d'information et en analyse statistique des textes. Nous nous sommes notamment concentré sur trois tâches : l'extraction supervisée de relations entre entités, la découverte de relations, et la découverte de classes d'entités. Pour l'extraction de relations, nous proposons une approche supervisée basée sur les modèles de langues et l'algorithme d'apprentissage des k-plus-proches voisins. Les résultats expérimentaux montrent l'efficacité et la robustesse de nos modèles, dépassant les systèmes état-de-l'art tout en utilisant des informations linguistiques plus simples à obtenir. Dans la seconde tâche, nous passons à un modèle non supervisé pour découvrir les relations au lieu d'en extraire des prédéfinies. Nous modélisons ce problème comme une tâche de clustering avec une fonction de similarité là encore basée sur les modèles de langues. Les performances, évaluées sur un corpus de vidéos de matchs de football, montrnt l'intérêt de notre approche par rapport aux modèles classiques. Enfin, dans la dernière tâche, nous nous intéressons non plus aux relations mais aux entités, source d'informations essentielles dans les documents. Nous proposons une technique de clustering d'entités afin de faire émerger, sans a priori, des classes sémantiques parmi celles-ci, en adoptant une représentation nouvelle des données permettant de mieux tenir compte des chaque occurrence des entités. En guise de conclusion, nous avons montré expérimentalement que des techniques simples, exigeant peu de connaissances a priori, et utilisant des informations linguistique facilement accessibles peuvent être suffisantes pour extraire efficacement des informations précises à partir du texte. Dans notre cas, ces bons résultats sont obtenus en choisissant une représentation adaptée pour les données, basée sur une analyse statistique ou des modèles de recherche d'information. Le chemin est encore long avant d'être en mesure de traiter directement des documents multimédia, mais nous espérons que nos propositions pourront servir de tremplin pour les recherches futures dans ce domaine.

Page generated in 0.05 seconds