Spelling suggestions: "subject:"banco : dados"" "subject:"banco : lados""
361 |
Aplicação do processo de descoberta de conhecimento em dados do poder judiciário do estado do Rio Grande do Sul / Applying the Knowledge Discovery in Database (KDD) Process to Data of the Judiciary Power of Rio Grande do SulSchneider, Luís Felipe January 2003 (has links)
Para explorar as relações existentes entre os dados abriu-se espaço para a procura de conhecimento e informações úteis não conhecidas, a partir de grandes conjuntos de dados armazenados. A este campo deu-se o nome de Descoberta de Conhecimento em Base de Dados (DCBD), o qual foi formalizado em 1989. O DCBD é composto por um processo de etapas ou fases, de natureza iterativa e interativa. Este trabalho baseou-se na metodologia CRISP-DM . Independente da metodologia empregada, este processo tem uma fase que pode ser considerada o núcleo da DCBD, a “mineração de dados” (ou modelagem conforme CRISP-DM), a qual está associado o conceito “classe de tipo de problema”, bem como as técnicas e algoritmos que podem ser empregados em uma aplicação de DCBD. Destacaremos as classes associação e agrupamento, as técnicas associadas a estas classes, e os algoritmos Apriori e K-médias. Toda esta contextualização estará compreendida na ferramenta de mineração de dados escolhida, Weka (Waikato Environment for Knowledge Analysis). O plano de pesquisa está centrado em aplicar o processo de DCBD no Poder Judiciário no que se refere a sua atividade fim, julgamentos de processos, procurando por descobertas a partir da influência da classificação processual em relação à incidência de processos, ao tempo de tramitação, aos tipos de sentenças proferidas e a presença da audiência. Também, será explorada a procura por perfis de réus, nos processos criminais, segundo características como sexo, estado civil, grau de instrução, profissão e raça. O trabalho apresenta nos capítulos 2 e 3 o embasamento teórico de DCBC, detalhando a metodologia CRISP-DM. No capítulo 4 explora-se toda a aplicação realizada nos dados do Poder Judiciário e por fim, no capítulo 5, são apresentadas as conclusões. / With the purpose of exploring existing connections among data, a space has been created for the search of Knowledge an useful unknown information based on large sets of stored data. This field was dubbed Knowledge Discovery in Databases (KDD) and it was formalized in 1989. The KDD consists of a process made up of iterative and interactive stages or phases. This work was based on the CRISP-DM methodology. Regardless of the methodology used, this process features a phase that may be considered as the nucleus of KDD, the “data mining” (or modeling according to CRISP-DM) which is associated with the task, as well as the techniques and algorithms that may be employed in an application of KDD. What will be highlighted in this study is affinity grouping and clustering, techniques associated with these tasks and Apriori and K-means algorithms. All this contextualization will be embodied in the selected data mining tool, Weka (Waikato Environment for Knowledge Analysis). The research plan focuses on the application of the KDD process in the Judiciary Power regarding its related activity, court proceedings, seeking findings based on the influence of the procedural classification concerning the incidence of proceedings, the proceduring time, the kind of sentences pronounced and hearing attendance. Also, the search for defendants’ profiles in criminal proceedings such as sex, marital status, education background, professional and race. In chapters 2 and 3, the study presents the theoretical grounds of KDD, explaining the CRISP-DM methodology. Chapter 4 explores all the application preformed in the data of the Judiciary Power, and lastly, in Chapter conclusions are drawn
|
362 |
Gestion d'objects composes dans un SGBD : cas particulier des documents structuresLima, Jose Valdeni de January 1990 (has links)
Cette thèse traite du problème de la gestion des documents structurés multimédia dans un SGBD. Par gestion, nous entendons la modélisation, la manipulation, le stockage et l'accès aux documents. Nous présentons un modèle de Documents Structurés de Bureau (DSB) et une algèbre associée pour réaliser la spécification précise des aspects fonctionnels : opérateurs de construction et restructuration des objets manipulés et fonctions d'accès. Le stockage et l'accès sont implémentés au niveau fonctionnel sous forme d'opérations sur des documents en prenant en considération leurs structures logiques. Le couplage du modèle standard ODA au modéle DSB et l'intégration au niveau fonctionnel des opérations implémentées ont permis la mise en place d'un gestionnaire autonome de documents utilisable à partir d'un SGBD relationnel. Ce gestionnaire de documents pemiet la spécialisation des documents et l'utilisation de valeurs nulles. Une grande partie de ce travail a été réalisée dans le cadre du projet ESPRIT DOEOIS et un prototype expérimental a été développé sur ORACLE.
|
363 |
SES : sistema de extração semântica de informações / System of semantic extraction of informationScarinci, Rui Gureghian January 1997 (has links)
Entre as áreas que mais se desenvolvem na informática nos últimos anos estão aquelas relacionadas ao crescimento da rede Internet, que interliga milhões de usuários de todo o mundo. Esta rede disponibiliza aos usuários uma a enorme variedade e quantidade de informações, principalmente dados armazenados de forma não estruturada ou semi estruturada. Contudo, tal volume e heterogeneidade acaba dificultando a manipulação dos dados recuperados a partir da Internet. Este problema motivou o desenvolvimento deste trabalho. Mesmo com o auxílio de várias ferramentas de pesquisa na Internet, buscando realizar pesquisas sobre assuntos específicos, o usuário ainda tem que manipular em seu computador pessoal uma grande quantidade de informação, pois estas ferramentas não realizam um processo de seleção detalhado. Ou seja, são recuperados muitos dados não interessantes ao usuário. Existe, também, uma grande diversidade de assuntos e padrões de transferência e armazenamento da informação criando os mais heterogêneos ambientes de pesquisa e consulta de dados. Esta heterogeneidade faz com que o usuário da rede deva conhecer todo um conjunto de padrões e ferramentas a fim de obter a informação desejada. No entanto, a maior dificuldade de manipulação esta ligada aos formatos de armazenamento não estruturados ou pouco estruturados, como, por exemplo: arquivos textos, Mails (correspondência eletrônica) e artigos de News (jornais eletrônicos). Nestes formatos, o entendimento do documento exige a leitura do mesmo pelo usuário, o que muitas vezes acarreta em um gasto de tempo desnecessário, pois o documento, por exemplo, pode não ser de interesse deste ou, então, ser de interesse, mas sua leitura completa só seria útil posteriormente. Várias informações, como chamadas de trabalhos para congressos, preços de produtos e estatísticas econômicas, entre outras, apresentam validade temporal. Outras informações são atualizadas periodicamente. Muitas dessas características temporais são explicitas, outras estão implícitas no meio de outros tipos de dados. Isto torna muito difícil a recuperação de tal tipo de informação, gerando, várias vezes, a utilização de informações desatualizadas, ou a perda de oportunidades. Desta forma, o grande volume de dados em arquivos pessoais obtidos a partir da Internet criou uma complexa tarefa de gerenciamento dos mesmos em conseqüência da natureza não estruturada dos documentos recuperados e da complexidade da análise do tempo de validade inerente a estes dados. Com o objetivo de satisfazer as necessidades de seleção e conseqüente manipulação das informações existentes a nível local (computador pessoal), neste trabalho, é descrito um sistema para extração e sumarização destes dados, utilizando conceitos de IE (Information Extraction) e Sistemas Baseados em Conhecimento. Os dados processados são parcialmente estruturados ou não estruturados, sendo manipulados por um extrator configurado a partir de bases de conhecimento geradas pelo usuário do sistema. O objetivo final desta dissertação é a implementação do Sistema de Extração Semântica de Informações, o qual permite a classificação dos dados extraídos em classes significativas para o usuário e a determinação da validade temporal destes dados a partir da geração de uma base de dados estruturada. / One of the most challenging area in Computer Science is related to Internet technology. This network offers to the users a large variety and amount of information, mainly, data storage in unstructured or semi-structured formats. However, the vast data volume and heterogeneity transforms the retrieved data manipulation a very arduous work. This problem was the prime motivation of this work. As with many tools for data retrieval and specific searching, the user has to manipulate in his personal computer an increasing amount of information, because these tools do not realize a precise data selection process. Many retrieval data are not interesting for the user. There are, also, a big diversity of subjects and standards in information transmission and storage, creating the most heterogeneous environments in data searching and retrieval. Due to this heterogeneity, the user has to know many data standards and searching tools to obtain the requested information. However, the fundamental problem for data manipulation is the partially or fully unstructured data formats, as text, mail and news data structures. For files in these formats, the user has to read each of the files to filter the relevant information, originating a loss of time, because the document could be not interesting for the user, or if it is interesting, its complete reading may be unnecessary at the moment. Some information as call-for-papers, product prices, economic statistics and others, has associated a temporal validity. Other information are updated periodically. Some of these temporal characteristics are explicit, others are implicitly embedded in other data types. As it is very difficult to retrieve the temporal data automatically, which generate, many times, the use of invalid information, as a result, some opportunities are lost. On this paper a system for extraction and summarizing of data is described. The main objective is to satisfy the user's selection needs and consequently information manipulation stored in a personal computer. To achieve this goal we are employed the concepts of Information Extraction (IE) and Knowledge Based Systems. The input data manipulation is done by an extraction procedure configured by a user who defined knowledge base. The objective of this paper is to develop a System of Semantic Extraction of Information which classifies the data extracted in meaningful classes for the user and to deduce the temporal validity of this data. This goal was achieved by the generation of a structured temporal data base.
|
364 |
Enhancing spatial association rule mining in geographic databases / Melhorando a Mineração de Regras de Associação Espacial em Bancos de Dados GeográficosBogorny, Vania January 2006 (has links)
A técnica de mineração de regras de associação surgiu com o objetivo de encontrar conhecimento novo, útil e previamente desconhecido em bancos de dados transacionais, e uma grande quantidade de algoritmos de mineração de regras de associação tem sido proposta na última década. O maior e mais bem conhecido problema destes algoritmos é a geração de grandes quantidades de conjuntos freqüentes e regras de associação. Em bancos de dados geográficos o problema de mineração de regras de associação espacial aumenta significativamente. Além da grande quantidade de regras e padrões gerados a maioria são associações do domínio geográfico, e são bem conhecidas, normalmente explicitamente representadas no esquema do banco de dados. A maioria dos algoritmos de mineração de regras de associação não garantem a eliminação de dependências geográficas conhecidas a priori. O resultado é que as mesmas associações representadas nos esquemas do banco de dados são extraídas pelos algoritmos de mineração de regras de associação e apresentadas ao usuário. O problema de mineração de regras de associação espacial pode ser dividido em três etapas principais: extração dos relacionamentos espaciais, geração dos conjuntos freqüentes e geração das regras de associação. A primeira etapa é a mais custosa tanto em tempo de processamento quanto pelo esforço requerido do usuário. A segunda e terceira etapas têm sido consideradas o maior problema na mineração de regras de associação em bancos de dados transacionais e tem sido abordadas como dois problemas diferentes: “frequent pattern mining” e “association rule mining”. Dependências geográficas bem conhecidas aparecem nas três etapas do processo. Tendo como objetivo a eliminação dessas dependências na mineração de regras de associação espacial essa tese apresenta um framework com três novos métodos para mineração de regras de associação utilizando restrições semânticas como conhecimento a priori. O primeiro método reduz os dados de entrada do algoritmo, e dependências geográficas são eliminadas parcialmente sem que haja perda de informação. O segundo método elimina combinações de pares de objetos geográficos com dependências durante a geração dos conjuntos freqüentes. O terceiro método é uma nova abordagem para gerar conjuntos freqüentes não redundantes e sem dependências, gerando conjuntos freqüentes máximos. Esse método reduz consideravelmente o número final de conjuntos freqüentes, e como conseqüência, reduz o número de regras de associação espacial. / The association rule mining technique emerged with the objective to find novel, useful, and previously unknown associations from transactional databases, and a large amount of association rule mining algorithms have been proposed in the last decade. Their main drawback, which is a well known problem, is the generation of large amounts of frequent patterns and association rules. In geographic databases the problem of mining spatial association rules increases significantly. Besides the large amount of generated patterns and rules, many patterns are well known geographic domain associations, normally explicitly represented in geographic database schemas. The majority of existing algorithms do not warrant the elimination of all well known geographic dependences. The result is that the same associations represented in geographic database schemas are extracted by spatial association rule mining algorithms and presented to the user. The problem of mining spatial association rules from geographic databases requires at least three main steps: compute spatial relationships, generate frequent patterns, and extract association rules. The first step is the most effort demanding and time consuming task in the rule mining process, but has received little attention in the literature. The second and third steps have been considered the main problem in transactional association rule mining and have been addressed as two different problems: frequent pattern mining and association rule mining. Well known geographic dependences which generate well known patterns may appear in the three main steps of the spatial association rule mining process. Aiming to eliminate well known dependences and generate more interesting patterns, this thesis presents a framework with three main methods for mining frequent geographic patterns using knowledge constraints. Semantic knowledge is used to avoid the generation of patterns that are previously known as non-interesting. The first method reduces the input problem, and all well known dependences that can be eliminated without loosing information are removed in data preprocessing. The second method eliminates combinations of pairs of geographic objects with dependences, during the frequent set generation. A third method presents a new approach to generate non-redundant frequent sets, the maximal generalized frequent sets without dependences. This method reduces the number of frequent patterns very significantly, and by consequence, the number of association rules.
|
365 |
Enhancing spatial association rule mining in geographic databases / Melhorando a Mineração de Regras de Associação Espacial em Bancos de Dados GeográficosBogorny, Vania January 2006 (has links)
A técnica de mineração de regras de associação surgiu com o objetivo de encontrar conhecimento novo, útil e previamente desconhecido em bancos de dados transacionais, e uma grande quantidade de algoritmos de mineração de regras de associação tem sido proposta na última década. O maior e mais bem conhecido problema destes algoritmos é a geração de grandes quantidades de conjuntos freqüentes e regras de associação. Em bancos de dados geográficos o problema de mineração de regras de associação espacial aumenta significativamente. Além da grande quantidade de regras e padrões gerados a maioria são associações do domínio geográfico, e são bem conhecidas, normalmente explicitamente representadas no esquema do banco de dados. A maioria dos algoritmos de mineração de regras de associação não garantem a eliminação de dependências geográficas conhecidas a priori. O resultado é que as mesmas associações representadas nos esquemas do banco de dados são extraídas pelos algoritmos de mineração de regras de associação e apresentadas ao usuário. O problema de mineração de regras de associação espacial pode ser dividido em três etapas principais: extração dos relacionamentos espaciais, geração dos conjuntos freqüentes e geração das regras de associação. A primeira etapa é a mais custosa tanto em tempo de processamento quanto pelo esforço requerido do usuário. A segunda e terceira etapas têm sido consideradas o maior problema na mineração de regras de associação em bancos de dados transacionais e tem sido abordadas como dois problemas diferentes: “frequent pattern mining” e “association rule mining”. Dependências geográficas bem conhecidas aparecem nas três etapas do processo. Tendo como objetivo a eliminação dessas dependências na mineração de regras de associação espacial essa tese apresenta um framework com três novos métodos para mineração de regras de associação utilizando restrições semânticas como conhecimento a priori. O primeiro método reduz os dados de entrada do algoritmo, e dependências geográficas são eliminadas parcialmente sem que haja perda de informação. O segundo método elimina combinações de pares de objetos geográficos com dependências durante a geração dos conjuntos freqüentes. O terceiro método é uma nova abordagem para gerar conjuntos freqüentes não redundantes e sem dependências, gerando conjuntos freqüentes máximos. Esse método reduz consideravelmente o número final de conjuntos freqüentes, e como conseqüência, reduz o número de regras de associação espacial. / The association rule mining technique emerged with the objective to find novel, useful, and previously unknown associations from transactional databases, and a large amount of association rule mining algorithms have been proposed in the last decade. Their main drawback, which is a well known problem, is the generation of large amounts of frequent patterns and association rules. In geographic databases the problem of mining spatial association rules increases significantly. Besides the large amount of generated patterns and rules, many patterns are well known geographic domain associations, normally explicitly represented in geographic database schemas. The majority of existing algorithms do not warrant the elimination of all well known geographic dependences. The result is that the same associations represented in geographic database schemas are extracted by spatial association rule mining algorithms and presented to the user. The problem of mining spatial association rules from geographic databases requires at least three main steps: compute spatial relationships, generate frequent patterns, and extract association rules. The first step is the most effort demanding and time consuming task in the rule mining process, but has received little attention in the literature. The second and third steps have been considered the main problem in transactional association rule mining and have been addressed as two different problems: frequent pattern mining and association rule mining. Well known geographic dependences which generate well known patterns may appear in the three main steps of the spatial association rule mining process. Aiming to eliminate well known dependences and generate more interesting patterns, this thesis presents a framework with three main methods for mining frequent geographic patterns using knowledge constraints. Semantic knowledge is used to avoid the generation of patterns that are previously known as non-interesting. The first method reduces the input problem, and all well known dependences that can be eliminated without loosing information are removed in data preprocessing. The second method eliminates combinations of pairs of geographic objects with dependences, during the frequent set generation. A third method presents a new approach to generate non-redundant frequent sets, the maximal generalized frequent sets without dependences. This method reduces the number of frequent patterns very significantly, and by consequence, the number of association rules.
|
366 |
Enhancing spatial association rule mining in geographic databases / Melhorando a Mineração de Regras de Associação Espacial em Bancos de Dados GeográficosBogorny, Vania January 2006 (has links)
A técnica de mineração de regras de associação surgiu com o objetivo de encontrar conhecimento novo, útil e previamente desconhecido em bancos de dados transacionais, e uma grande quantidade de algoritmos de mineração de regras de associação tem sido proposta na última década. O maior e mais bem conhecido problema destes algoritmos é a geração de grandes quantidades de conjuntos freqüentes e regras de associação. Em bancos de dados geográficos o problema de mineração de regras de associação espacial aumenta significativamente. Além da grande quantidade de regras e padrões gerados a maioria são associações do domínio geográfico, e são bem conhecidas, normalmente explicitamente representadas no esquema do banco de dados. A maioria dos algoritmos de mineração de regras de associação não garantem a eliminação de dependências geográficas conhecidas a priori. O resultado é que as mesmas associações representadas nos esquemas do banco de dados são extraídas pelos algoritmos de mineração de regras de associação e apresentadas ao usuário. O problema de mineração de regras de associação espacial pode ser dividido em três etapas principais: extração dos relacionamentos espaciais, geração dos conjuntos freqüentes e geração das regras de associação. A primeira etapa é a mais custosa tanto em tempo de processamento quanto pelo esforço requerido do usuário. A segunda e terceira etapas têm sido consideradas o maior problema na mineração de regras de associação em bancos de dados transacionais e tem sido abordadas como dois problemas diferentes: “frequent pattern mining” e “association rule mining”. Dependências geográficas bem conhecidas aparecem nas três etapas do processo. Tendo como objetivo a eliminação dessas dependências na mineração de regras de associação espacial essa tese apresenta um framework com três novos métodos para mineração de regras de associação utilizando restrições semânticas como conhecimento a priori. O primeiro método reduz os dados de entrada do algoritmo, e dependências geográficas são eliminadas parcialmente sem que haja perda de informação. O segundo método elimina combinações de pares de objetos geográficos com dependências durante a geração dos conjuntos freqüentes. O terceiro método é uma nova abordagem para gerar conjuntos freqüentes não redundantes e sem dependências, gerando conjuntos freqüentes máximos. Esse método reduz consideravelmente o número final de conjuntos freqüentes, e como conseqüência, reduz o número de regras de associação espacial. / The association rule mining technique emerged with the objective to find novel, useful, and previously unknown associations from transactional databases, and a large amount of association rule mining algorithms have been proposed in the last decade. Their main drawback, which is a well known problem, is the generation of large amounts of frequent patterns and association rules. In geographic databases the problem of mining spatial association rules increases significantly. Besides the large amount of generated patterns and rules, many patterns are well known geographic domain associations, normally explicitly represented in geographic database schemas. The majority of existing algorithms do not warrant the elimination of all well known geographic dependences. The result is that the same associations represented in geographic database schemas are extracted by spatial association rule mining algorithms and presented to the user. The problem of mining spatial association rules from geographic databases requires at least three main steps: compute spatial relationships, generate frequent patterns, and extract association rules. The first step is the most effort demanding and time consuming task in the rule mining process, but has received little attention in the literature. The second and third steps have been considered the main problem in transactional association rule mining and have been addressed as two different problems: frequent pattern mining and association rule mining. Well known geographic dependences which generate well known patterns may appear in the three main steps of the spatial association rule mining process. Aiming to eliminate well known dependences and generate more interesting patterns, this thesis presents a framework with three main methods for mining frequent geographic patterns using knowledge constraints. Semantic knowledge is used to avoid the generation of patterns that are previously known as non-interesting. The first method reduces the input problem, and all well known dependences that can be eliminated without loosing information are removed in data preprocessing. The second method eliminates combinations of pairs of geographic objects with dependences, during the frequent set generation. A third method presents a new approach to generate non-redundant frequent sets, the maximal generalized frequent sets without dependences. This method reduces the number of frequent patterns very significantly, and by consequence, the number of association rules.
|
Page generated in 0.0404 seconds