Spelling suggestions: "subject:"hand offset"" "subject:"land offset""
1 |
Cálculos de estrutura eletrônica de materiais e nanoestruturas com inclusão de autoenergia: Método LDA - 1/2. / Electronic structure calculations of material and nanostructures with the inclusion of the self-energy: the LDA - 1/2 method.Ribeiro Junior, Mauro Fernando Soares 13 December 2011 (has links)
Neste trabalho, utilizamos o desenvolvimento recente do método DFT/LDA-1/2 para cálculos de estados excitados em materiais. Começamos com um resumo da teoria do funcional da densidade (DFT) e incluímos uma introdução ao método LDA-1/2 para cálculos de excitações em sólidos. Na compilação dos resultados esperamos ter demonstrado a utilidade do LDA-1/2 para cálculos de alinhamentos de bandas em junções semicondutor/semicondutor e semicondutor/isolante. A aplicação do método envolve o conhecimento da química básica dos sistemas. Para tanto, escolhemos sistemas importantes para diversas aplicações, e cujos modelos de simulação estão o limite ou fora do alcance de metodologias que envolvem alto custo computacional, mas que foram bem caracterizados experimentalmente. Concentramos nossas ações no estudo da capacidade preditiva do LDA-1/2 para alinhamentos de bandas, os chamados band offsets, particularmente importantes para a micro e optoeletrônica. Quando não foi possível compararmos nossos resultados com o experimento, procuramos a comparação com métodos estado-da-arte como GW. Bons resultados foram obtidos para band gaps e band offsets de interfaces A1As/GaAs, Si/SiO2, A1N/GaN e CdSe/CdTe, que representam os diferentes tipos de jun_c~oes poss__veis, com (e.g. A1As/GaAs, A1N/GaN) e sem (e.g. Si/SiO2, CdSe/CdTe) ^anions omuns, com (e.g. A1As/GaAs) e sem (e.g. CdSe/CdTe, Si/SiO2) casamento de parâmetros de rede e diferentes tipos de alinhamentos (\"straddling\", e.g. A1As/GaAs ou \"staggered\"e.g. CdSe/CdTe). Analisamos de maneira sistemática o comportamento do entorno do bandgap ao longo da interface, verificando plano a plano atômico o comportamento das bordas de valência e condução com LDA-1/2 em comparação com o LDA, ou comparando diferentes modelos dentro do LDA-1/2, como o caso do CdSe/CdTe e do Si/SiO2. Para o caso A1As/GaAs, aproveitamos o casamento de parâmetros de rede dos semicondutores constituintes e tentamos um modelo de interface de ligas A1xGa1-x As/GaAs para estudar a variação de valência, condução e bandgap em função da composição x. No AlN/GaN, estudamos também os offsets com as contribuições dos orbitais separadamente. Em todos os casos o LDA-1/2 levou-nos a resultados interessantes com modelos simples. A exploração de novas fronteiras de aplicação do método fez-se necessária com a diminuição da dimensionalidade dos sistemas, de 3D (bulk ) para 2D (interfaces) e depois para 1D, ou seja, _os quânticos (\"nanofios\"). Nosso material de estudo para os foi o ZnO que, além da motivação oriunda de conhecidas aplicações em optoeletrônica, apresenta desafios para simulações bulk com qualquer método, e que foi abordado com certo sucesso usando o LDA-1/2 anteriormente, sendo que para fios quânticos encontramos resultados interessantes em geometrias triangulares que facilitaram os modelos. Calculamos o bandgap ZnO bulk e de nanofios passivados e não passivados com hidrogênios usando LDA e LDA-1/2 sem polarização de spin. As estruturas de bandas e o bandgap como função do diâmetro do ano_o foram calculados e ajustes com funções de decaimento foram feitos para comparação, por extrapolação, dos bandgaps com valores experimentais. Foi possível comparar nossos resultados de fios com o bulk, e predizer uma faixa de variaação de bandgaps que os experimentais podem encontrar para nanofios triangulares de ZnO. Também foi feita análise de energias de confinamento em fios quânticos de ZnO, comparando o LDA com LDA-1/2. Finalmente, mostramos os resultados de uma oportunidade de aplicação do método a um material com defeitos, recentemente descoberto e promissor, e com enorme mercado potencial em fotocatálise, o Ti1-O4N. Nosso trabalho envolveu a aplicação do LDA-1/2 a um problema muito desafiador, e.g. a geração de energia limpa, especificamente a separação da molécula de água para produção de hidrogênio. O desafio maior vem da dificuldade de predição de bandgaps teoricamente, em particular para sistemas grandes como é o caso de modelos atomísticos com defeitos, devido aos altos custos computacionais envolvidos. Tais dificuldades forçam os pesquisadores a usarem parâmetros ajustáveis ou métodos semi-empíricos, ou modelos simplificados demais para descrever precisamente resultados experimentais. Isto dificulta o estudo dos sistemas fotocatalíticos potencialmente eficientes e que não foram ainda caracterizados ou otimizados. O LDA-1/2 é aqui validado para esta classe de materiais, abrindo assim a oportunidade para estudar sistemas mais realísticos e complexos para cálculos ainda mais precisos, particularmente para geração de energia limpa. Em particular, modelamos o TiO2 na estrutura rutile com nitrogênio substitucional, cuja estrutura eletrônica é ainda debatida. Foi a primeira aplicação do LDA-1/2 a sistemas com algum tipo de defeito, com ótimos resultados para o novo sistema Ti1- _O4N com vacâncias de Ti. / In this work, we used the recent development of DFT/LDA-1/2 method for calculations of excited states in materials. We begin with a summary of the density functional theory (DFT) and included an introduction to the method LDA-1/2 for calculations of excitations in solids. In compiling the results we hope to have demonstrated the usefulness of the LDA-1/2 for calculating alignments of bands at junctions semiconductor / semiconductor and semiconductor / insulator. The method involves the knowledge of basic chemical systems. To do this we chose systems important for several applications, and simulation models which are the limit or beyond the reach of methodologies involving high computational cost, but have been well characterized experimentally. We focus our actions in the study of the predictive capability of the LDA-1/2 for alignments of bands, the band called offsets, particularly important for micro and optoelectronics. When it was not possible to compare our results with experiment, we compared the methods with state of the art as GW. Good results were obtained for band gaps and band offsets of interfaces A1As/GaAs, Si/SiO2, A1N/GaN and CdSe / CdTe, which represent the different types of jun_c poss__veis-tions, with (eg A1As/GaAs, A1N/GaN) and without (eg Si/SiO2, CdSe / CdTe) ^ omuns anions with (eg A1As/GaAs) and without (eg CdSe / CdTe, Si/SiO2) matching network parameters and different types of alignments (\"straddling\" eg A1As/GaAs or \"staggered\" eg CdSe / CdTe). Systematically analyze the behavior of the environment along the interface bandgap, plane by plane scanning behavior of the edges atomic valence and conduction with LDA-half in comparison with LDA, or comparing templates within the LDA-1 / 2, as the case of CdSe / CdTe and Si/SiO2. For the case A1As/GaAs, we take the marriage of network parameters of semiconductor components and try an interface model alloys A1xGa1-x As / GaAs to study the variation of valence, conduction and bandgap as a function of composition x. In the AlN / GaN, we also studied the offsets with the contributions of the orbitals separately. In all cases the LDA-half led us to interesting results from simple models. The exploration of new frontiers of the method was necessary to decrease the dimensionality of the systems, the 3D (bulk) for 2D (interfaces) and then to 1D, ie, quantum _os (\"nanowires\"). Our study material for the ZnO was that, apart from the motivation coming from known applications in optoelectronics, presents challenges for bulk simulations with any method, and that was addressed with some success using the LDA-half earlier, and for wireless find interesting results in quantum triangular geometries that facilitated models. We calculate the bandgap and bulk ZnO nanowires passivated and not passivated with hydrogen using LDA and LDA-1/2 without spin polarization. The bandgap structures and strips as a function of the diameter of ano_o adjustments are calculated and decay functions for comparison were made by extrapolation of the bandgaps with experimental values. It was possible to compare our results with the bulk of wires, and predict a range of bandgaps that variaação can find experimental triangular ZnO nanowires. It was also made analysis of energy confinement in ZnO quantum wires, comparing LDA with LDA-1/2. Finally, we show the results of an opportunity to apply the method to a material with defects, newly discovered and promising, and with huge market potential in photocatalysis, the Ti1-O4N. Our work involved the application of LDA-1/2 to a very challenging problem, eg the generation of clean energy, specifically the separation of the water molecule for hydrogen production. The main challenge has been the difficulty of predicting bandgaps theoretically, in particular for large systems such as the model atomistic defects because of the high computational costs involved. These difficulties force the researchers to use adjustable parameters or semi-empirical methods, or other simplified models to accurately describe experimental results. This complicates the study of potentially efficient photocatalytic systems which have not yet been characterized or optimized. The LDA-1/2 is here validated for this class of materials, thus opening the opportunity to study more realistic and complex systems for more accurate calculations, particularly for clean energy generation. In particular, we modeled the structure of TiO2 in the rutile with substitutional nitrogen, whose electronic structure is still debated. It was the first application of the LDA-1/2 systems with some kind of defect, with excellent results for the new system Ti1-_O4N with Ti vacancies.
|
2 |
First-principles Study Of Gaas/alas Nanowire HeterostructuresSenozan, Selma 01 September 2012 (has links) (PDF)
Nanowire heterostructures play a crucial role in nanoscale electronics, i.e., one-dimensional electronics derives benefits from the growth of heterostructures along the nanowire axis. We use first-principles plane-wave calculations within density functional theory with the localized density approximation (LDA) to get information about the structural and electronic properties of bare and hydrogen passivated GaAs/AlAs nanowire heterostructures. We also take into account the reconstruction of the nanowire surfaces. Modeled nanowire heterostructures are constructed using bulk atomic positions along [001] and [111] direction of zinc-blende structures and cutting out wires from this GaAs/AlAs heterostructure crystal with a diameter of 1 nm. We study for the effects of the surface passivation on the band gap and the band offsets for the planar GaAs/AlAs bulk heterostructure system and GaAs/AlAs nanowire heterostructure system. It is possible to control the potential that carriers feel in semiconductor heterostructures. For the planar lattice-matched heterostructures, the macroscopic average of potential of the two materials is constant far from the interface and there is a discontinuity at the interface depending on the composition of the heterostructure. In order to obtain the valence band offset in the heterostructure system, the shift in the macroscopic potential at the interface and the difference between the valence band maximum values of the two constituents must be added. In nanoscale heterostructures, the potential profile presents a more complex picture. The results indicate that while the discontinuity remains close to the planar limit right at the interface, there are fluctuations on the average potential profile beyond the interface developed by the inhomogeneous surface termination, that is, there are variations of the band edges beyond the interface.
We report a first-principles study of the electronic properties of surface dangling-bond (SDB) states in hydrogen passivated GaAs/AlAs nanowire heterostructures with a diameter of 1 nm, where the SDB is defined as the defect due to an incomplete passivation of a surface atom. The charge transition levels of SDB states serve as a common energy reference level, such that charge transition level value for group III and V atoms is a constant value and a periodic table atomic property.
We have carried out first-principles electronic structure and total energy calculations of aluminum nanowires for a series of different diameters ranging from 3 Angtrom-10 Angstrom, which is cut out from a slab of ideal bulk structure along the [001] direction. First-principles calculations of aluminum nanowires have been carried out within the density-functional theory. We use the norm-conserving pseudopotentials that are shown to yield successful results for ultrathin nanowire regime. Our results show that the number of bands crossing the Fermi level decreases with decreasing wire diameter and all wires studied are metallic.
|
3 |
Cálculos de estrutura eletrônica de materiais e nanoestruturas com inclusão de autoenergia: Método LDA - 1/2. / Electronic structure calculations of material and nanostructures with the inclusion of the self-energy: the LDA - 1/2 method.Mauro Fernando Soares Ribeiro Junior 13 December 2011 (has links)
Neste trabalho, utilizamos o desenvolvimento recente do método DFT/LDA-1/2 para cálculos de estados excitados em materiais. Começamos com um resumo da teoria do funcional da densidade (DFT) e incluímos uma introdução ao método LDA-1/2 para cálculos de excitações em sólidos. Na compilação dos resultados esperamos ter demonstrado a utilidade do LDA-1/2 para cálculos de alinhamentos de bandas em junções semicondutor/semicondutor e semicondutor/isolante. A aplicação do método envolve o conhecimento da química básica dos sistemas. Para tanto, escolhemos sistemas importantes para diversas aplicações, e cujos modelos de simulação estão o limite ou fora do alcance de metodologias que envolvem alto custo computacional, mas que foram bem caracterizados experimentalmente. Concentramos nossas ações no estudo da capacidade preditiva do LDA-1/2 para alinhamentos de bandas, os chamados band offsets, particularmente importantes para a micro e optoeletrônica. Quando não foi possível compararmos nossos resultados com o experimento, procuramos a comparação com métodos estado-da-arte como GW. Bons resultados foram obtidos para band gaps e band offsets de interfaces A1As/GaAs, Si/SiO2, A1N/GaN e CdSe/CdTe, que representam os diferentes tipos de jun_c~oes poss__veis, com (e.g. A1As/GaAs, A1N/GaN) e sem (e.g. Si/SiO2, CdSe/CdTe) ^anions omuns, com (e.g. A1As/GaAs) e sem (e.g. CdSe/CdTe, Si/SiO2) casamento de parâmetros de rede e diferentes tipos de alinhamentos (\"straddling\", e.g. A1As/GaAs ou \"staggered\"e.g. CdSe/CdTe). Analisamos de maneira sistemática o comportamento do entorno do bandgap ao longo da interface, verificando plano a plano atômico o comportamento das bordas de valência e condução com LDA-1/2 em comparação com o LDA, ou comparando diferentes modelos dentro do LDA-1/2, como o caso do CdSe/CdTe e do Si/SiO2. Para o caso A1As/GaAs, aproveitamos o casamento de parâmetros de rede dos semicondutores constituintes e tentamos um modelo de interface de ligas A1xGa1-x As/GaAs para estudar a variação de valência, condução e bandgap em função da composição x. No AlN/GaN, estudamos também os offsets com as contribuições dos orbitais separadamente. Em todos os casos o LDA-1/2 levou-nos a resultados interessantes com modelos simples. A exploração de novas fronteiras de aplicação do método fez-se necessária com a diminuição da dimensionalidade dos sistemas, de 3D (bulk ) para 2D (interfaces) e depois para 1D, ou seja, _os quânticos (\"nanofios\"). Nosso material de estudo para os foi o ZnO que, além da motivação oriunda de conhecidas aplicações em optoeletrônica, apresenta desafios para simulações bulk com qualquer método, e que foi abordado com certo sucesso usando o LDA-1/2 anteriormente, sendo que para fios quânticos encontramos resultados interessantes em geometrias triangulares que facilitaram os modelos. Calculamos o bandgap ZnO bulk e de nanofios passivados e não passivados com hidrogênios usando LDA e LDA-1/2 sem polarização de spin. As estruturas de bandas e o bandgap como função do diâmetro do ano_o foram calculados e ajustes com funções de decaimento foram feitos para comparação, por extrapolação, dos bandgaps com valores experimentais. Foi possível comparar nossos resultados de fios com o bulk, e predizer uma faixa de variaação de bandgaps que os experimentais podem encontrar para nanofios triangulares de ZnO. Também foi feita análise de energias de confinamento em fios quânticos de ZnO, comparando o LDA com LDA-1/2. Finalmente, mostramos os resultados de uma oportunidade de aplicação do método a um material com defeitos, recentemente descoberto e promissor, e com enorme mercado potencial em fotocatálise, o Ti1-O4N. Nosso trabalho envolveu a aplicação do LDA-1/2 a um problema muito desafiador, e.g. a geração de energia limpa, especificamente a separação da molécula de água para produção de hidrogênio. O desafio maior vem da dificuldade de predição de bandgaps teoricamente, em particular para sistemas grandes como é o caso de modelos atomísticos com defeitos, devido aos altos custos computacionais envolvidos. Tais dificuldades forçam os pesquisadores a usarem parâmetros ajustáveis ou métodos semi-empíricos, ou modelos simplificados demais para descrever precisamente resultados experimentais. Isto dificulta o estudo dos sistemas fotocatalíticos potencialmente eficientes e que não foram ainda caracterizados ou otimizados. O LDA-1/2 é aqui validado para esta classe de materiais, abrindo assim a oportunidade para estudar sistemas mais realísticos e complexos para cálculos ainda mais precisos, particularmente para geração de energia limpa. Em particular, modelamos o TiO2 na estrutura rutile com nitrogênio substitucional, cuja estrutura eletrônica é ainda debatida. Foi a primeira aplicação do LDA-1/2 a sistemas com algum tipo de defeito, com ótimos resultados para o novo sistema Ti1- _O4N com vacâncias de Ti. / In this work, we used the recent development of DFT/LDA-1/2 method for calculations of excited states in materials. We begin with a summary of the density functional theory (DFT) and included an introduction to the method LDA-1/2 for calculations of excitations in solids. In compiling the results we hope to have demonstrated the usefulness of the LDA-1/2 for calculating alignments of bands at junctions semiconductor / semiconductor and semiconductor / insulator. The method involves the knowledge of basic chemical systems. To do this we chose systems important for several applications, and simulation models which are the limit or beyond the reach of methodologies involving high computational cost, but have been well characterized experimentally. We focus our actions in the study of the predictive capability of the LDA-1/2 for alignments of bands, the band called offsets, particularly important for micro and optoelectronics. When it was not possible to compare our results with experiment, we compared the methods with state of the art as GW. Good results were obtained for band gaps and band offsets of interfaces A1As/GaAs, Si/SiO2, A1N/GaN and CdSe / CdTe, which represent the different types of jun_c poss__veis-tions, with (eg A1As/GaAs, A1N/GaN) and without (eg Si/SiO2, CdSe / CdTe) ^ omuns anions with (eg A1As/GaAs) and without (eg CdSe / CdTe, Si/SiO2) matching network parameters and different types of alignments (\"straddling\" eg A1As/GaAs or \"staggered\" eg CdSe / CdTe). Systematically analyze the behavior of the environment along the interface bandgap, plane by plane scanning behavior of the edges atomic valence and conduction with LDA-half in comparison with LDA, or comparing templates within the LDA-1 / 2, as the case of CdSe / CdTe and Si/SiO2. For the case A1As/GaAs, we take the marriage of network parameters of semiconductor components and try an interface model alloys A1xGa1-x As / GaAs to study the variation of valence, conduction and bandgap as a function of composition x. In the AlN / GaN, we also studied the offsets with the contributions of the orbitals separately. In all cases the LDA-half led us to interesting results from simple models. The exploration of new frontiers of the method was necessary to decrease the dimensionality of the systems, the 3D (bulk) for 2D (interfaces) and then to 1D, ie, quantum _os (\"nanowires\"). Our study material for the ZnO was that, apart from the motivation coming from known applications in optoelectronics, presents challenges for bulk simulations with any method, and that was addressed with some success using the LDA-half earlier, and for wireless find interesting results in quantum triangular geometries that facilitated models. We calculate the bandgap and bulk ZnO nanowires passivated and not passivated with hydrogen using LDA and LDA-1/2 without spin polarization. The bandgap structures and strips as a function of the diameter of ano_o adjustments are calculated and decay functions for comparison were made by extrapolation of the bandgaps with experimental values. It was possible to compare our results with the bulk of wires, and predict a range of bandgaps that variaação can find experimental triangular ZnO nanowires. It was also made analysis of energy confinement in ZnO quantum wires, comparing LDA with LDA-1/2. Finally, we show the results of an opportunity to apply the method to a material with defects, newly discovered and promising, and with huge market potential in photocatalysis, the Ti1-O4N. Our work involved the application of LDA-1/2 to a very challenging problem, eg the generation of clean energy, specifically the separation of the water molecule for hydrogen production. The main challenge has been the difficulty of predicting bandgaps theoretically, in particular for large systems such as the model atomistic defects because of the high computational costs involved. These difficulties force the researchers to use adjustable parameters or semi-empirical methods, or other simplified models to accurately describe experimental results. This complicates the study of potentially efficient photocatalytic systems which have not yet been characterized or optimized. The LDA-1/2 is here validated for this class of materials, thus opening the opportunity to study more realistic and complex systems for more accurate calculations, particularly for clean energy generation. In particular, we modeled the structure of TiO2 in the rutile with substitutional nitrogen, whose electronic structure is still debated. It was the first application of the LDA-1/2 systems with some kind of defect, with excellent results for the new system Ti1-_O4N with Ti vacancies.
|
4 |
Development of Zn-IV-N2 and III-N/Zn-IV-N2 Heterostructures for High Efficiency Light Emitting Diodes Emitting Beyond Blue and GreenKarim, Md Rezaul 13 October 2021 (has links)
No description available.
|
5 |
Zinc Cadmium Sulphide And Zinc Sulphide As Alternative Heterojunction Partners For Cigs2 Solar CellsKumar, Bhaskar 01 January 2007 (has links)
Devices with ZnCdS/ZnS heterojunction partner layer have shown better blue photon response due to higher band gap of these compounds as compared to devices with CdS heterojunction partner layer. CdS heterojunction partner layer has shown high photovoltaic conversion efficiencies with CIGS absorber layer while efficiencies are lower with CuIn1-xGaxS2 (CIGS2). A negative conduction band offset has been observed for CdS/CIGS2 as compared to near flat conduction band alignment in case of CdS/CIGS devices, which results in higher interface dominated recombination. Moreover, it has been predicted that optimum band offsets for higher efficiency solar cells may be achieved for cells with alternative heterojunction partner such as ZnS. With varying ratio of Zn/ (Zn+Cd) in ZnxCd1-xS a range of bandgap energies can be obtained and thus an optimum band offset can be engineered. For reducing interface dominated recombination better lattice match between absorber and heterojunction partners is desirable. Although CdS has better lattice match with CuIn1-xGaxS2 absorber layer, same is not true for CuIn1-xGaxS2 absorber layers. Utilizing ZnxCd1-xS as heterojunction partner provides a range of lattice constant (between aZnS= ~5.4 Ǻ and aCdS= ~5.7 Ǻ) depending on Zn/(Zn+Cd). Therefore better lattice match can be obtained between heterojunction partner and absorber layer. Better lattice match will lead to lower interface dominated recombination, hence higher open circuit voltages. In the present study chemical bath deposition parameters are near optimized for high efficiency CIGS2 Solar cells. Effect of various chemical bath deposition parameters on device performance was studied and attempts were made to optimize the deposition parameters in order to improve the device performance.In/(In+Ga) ratio in absorber layer is varied to obtain good lattice match and optimum band alignment. Solar cells with conversion efficiencies comparable to conventional CdS/CIGS2 has been obtained with ZnxCd1-xS /CIGS2. High short current as well as higher open circuit voltages were obtained with ZnxCd1-xS as alternative heterojunction partner for CIGS2 solar cells as compared to SLG/Mo/CIGS2/ CdS / i-ZnO/ZnO:Al.
|
6 |
Improving Performance in Cadmium Telluride Solar Cells: From Fabrication to Understanding the Pathway Towards 25% EfficiencyLiyanage, Geethika Kaushalya January 2021 (has links)
No description available.
|
7 |
Characterization and Application of Colloidal Nanocrystalline Materials for Advanced PhotovoltaicsBhandari, Khagendra P. 22 October 2015 (has links)
No description available.
|
Page generated in 0.2675 seconds