• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploration-exploitation with Thompson sampling in linear systems / Algorithmes de Thompson sampling pour l’exploration-exploitation dans les systèmes linéaires

Abeille, Marc 13 December 2017 (has links)
Cette thèse est dédiée à l'étude du Thompson Sampling (TS), une heuristique qui vise à surmonter le dilemme entre exploration et exploitation qui est inhérent à tout processus décisionnel face à l'incertain. Contrairement aux algorithmes issus de l'heuristique optimiste face à l'incertain (OFU), où l'exploration provient du choix du modèle le plus favorable possible au vu de la connaissance accumulée, les algorithmes TS introduisent de l'aléa dans le processus décisionnel en sélectionnant aléatoirement un modèle plausible, ce qui les rend bien moins coûteux numériquement. Cette étude se concentre sur les problèmes paramétriques linéaires, qui autorisent les espaces état-action continus (infinis), en particulier les problèmes de Bandits Linéaires (LB) et les problèmes de contrôle Linéaire et Quadratique (LQ). Nous proposons dans cette thèse de nouvelles analyses du regret des algorithmes TS pour chacun de ces deux problèmes. Bien que notre démonstration pour les LB garantisse une borne supérieure identique aux résultats préexistants, la structure de la preuve offre une nouvelle vision du fonctionnement de l'algorithme TS, et nous permet d'étendre cette analyse aux problèmes LQ. Nous démontrons la première borne supérieure pour le regret de l'algorithme TS dans les problèmes LQ, qui garantie dans le cadre fréquentiste un regret au plus d'ordre O(\sqrt{T}). Enfin, nous proposons une application des méthodes d'exploration-exploitation pour les problèmes d'optimisation de portefeuille, et discutons dans ce cadre le besoin ou non d'explorer activement. / This dissertation is dedicated to the study of the Thompson Sampling (TS) algorithms designed to address the exploration-exploitation dilemma that is inherent in sequential decision-making under uncertainty. As opposed to algorithms derived from the optimism-in-the-face-of-uncertainty (OFU) principle, where the exploration is performed by selecting the most favorable model within the set of plausible one, TS algorithms rely on randomization to enhance the exploration, and thus are much more computationally efficient. We focus on linearly parametrized problems that allow for continuous state-action spaces, namely the Linear Bandit (LB) problems and the Linear Quadratic (LQ) control problems. We derive two novel analyses for the regret of TS algorithms in those settings. While the obtained regret bound for LB is similar to previous results, the proof sheds new light on the functioning of TS, and allows us to extend the analysis to LQ problems. As a result, we prove the first regret bound for TS in LQ, and show that the frequentist regret is of order O(sqrt{T}) which matches the existing guarantee for the regret of OFU algorithms in LQ. Finally, we propose an application of exploration-exploitation techniques to the practical problem of portfolio construction, and discuss the need for active exploration in this setting.
2

Contributions to Multi-Armed Bandits : Risk-Awareness and Sub-Sampling for Linear Contextual Bandits / Contributions aux bandits manchots : gestion du risque et sous-échantillonnage pour les bandits contextuels linéaires

Galichet, Nicolas 28 September 2015 (has links)
Cette thèse s'inscrit dans le domaine de la prise de décision séquentielle en environnement inconnu, et plus particulièrement dans le cadre des bandits manchots (multi-armed bandits, MAB), défini par Robbins et Lai dans les années 50. Depuis les années 2000, ce cadre a fait l'objet de nombreuses recherches théoriques et algorithmiques centrées sur le compromis entre l'exploration et l'exploitation : L'exploitation consiste à répéter le plus souvent possible les choix qui se sont avérés les meilleurs jusqu'à présent. L'exploration consiste à essayer des choix qui ont rarement été essayés, pour vérifier qu'on a bien identifié les meilleurs choix. Les applications des approches MAB vont du choix des traitements médicaux à la recommandation dans le contexte du commerce électronique, en passant par la recherche de politiques optimales de l'énergie. Les contributions présentées dans ce manuscrit s'intéressent au compromis exploration vs exploitation sous deux angles spécifiques. Le premier concerne la prise en compte du risque. Toute exploration dans un contexte inconnu peut en effet aboutir à des conséquences indésirables ; par exemple l'exploration des comportements d'un robot peut aboutir à des dommages pour le robot ou pour son environnement. Dans ce contexte, l'objectif est d'obtenir un compromis entre exploration, exploitation, et prise de risque (EER). Plusieurs algorithmes originaux sont proposés dans le cadre du compromis EER. Sous des hypothèses fortes, l'algorithme MIN offre des garanties de regret logarithmique, à l'état de l'art ; il offre également une grande robustesse, contrastant avec la forte sensibilité aux valeurs des hyper-paramètres de e.g. (Auer et al. 2002). L'algorithme MARAB s'intéresse à un critère inspiré de la littérature économique(Conditional Value at Risk), et montre d'excellentes performances empiriques comparées à (Sani et al. 2012), mais sans garanties théoriques. Enfin, l'algorithme MARABOUT modifie l'estimation du critère CVaR pour obtenir des garanties théoriques, tout en obtenant un bon comportement empirique. Le second axe de recherche concerne le bandit contextuel, où l'on dispose d'informations additionnelles relatives au contexte de la décision ; par exemple, les variables d'état du patient dans un contexte médical ou de l'utilisateur dans un contexte de recommandation. L'étude se focalise sur le choix entre bras qu'on a tirés précédemment un nombre de fois différent. Le choix repose en général sur la notion d'optimisme, comparant les bornes supérieures des intervalles de confiance associés aux bras considérés. Une autre approche appelée BESA, reposant sur le sous-échantillonnage des valeurs tirées pour les bras les plus visités, et permettant ainsi de se ramener au cas où tous les bras ont été tirés un même nombre de fois, a été proposée par (Baransi et al. 2014). / This thesis focuses on sequential decision making in unknown environment, and more particularly on the Multi-Armed Bandit (MAB) setting, defined by Lai and Robbins in the 50s. During the last decade, many theoretical and algorithmic studies have been aimed at cthe exploration vs exploitation tradeoff at the core of MABs, where Exploitation is biased toward the best options visited so far while Exploration is biased toward options rarely visited, to enforce the discovery of the the true best choices. MAB applications range from medicine (the elicitation of the best prescriptions) to e-commerce (recommendations, advertisements) and optimal policies (e.g., in the energy domain). The contributions presented in this dissertation tackle the exploration vs exploitation dilemma under two angles. The first contribution is centered on risk avoidance. Exploration in unknown environments often has adverse effects: for instance exploratory trajectories of a robot can entail physical damages for the robot or its environment. We thus define the exploration vs exploitation vs safety (EES) tradeoff, and propose three new algorithms addressing the EES dilemma. Firstly and under strong assumptions, the MIN algorithm provides a robust behavior with guarantees of logarithmic regret, matching the state of the art with a high robustness w.r.t. hyper-parameter setting (as opposed to, e.g. UCB (Auer 2002)). Secondly, the MARAB algorithm aims at optimizing the cumulative 'Conditional Value at Risk' (CVar) rewards, originated from the economics domain, with excellent empirical performances compared to (Sani et al. 2012), though without any theoretical guarantees. Finally, the MARABOUT algorithm modifies the CVar estimation and yields both theoretical guarantees and a good empirical behavior. The second contribution concerns the contextual bandit setting, where additional informations are provided to support the decision making, such as the user details in the ontent recommendation domain, or the patient history in the medical domain. The study focuses on how to make a choice between two arms with different numbers of samples. Traditionally, a confidence region is derived for each arm based on the associated samples, and the 'Optimism in front of the unknown' principle implements the choice of the arm with maximal upper confidence bound. An alternative, pioneered by (Baransi et al. 2014), and called BESA, proceeds instead by subsampling without replacement the larger sample set. In this framework, we designed a contextual bandit algorithm based on sub-sampling without replacement, relaxing the (unrealistic) assumption that all arm reward distributions rely on the same parameter. The CL-BESA algorithm yields both theoretical guarantees of logarithmic regret and good empirical behavior.

Page generated in 0.0465 seconds