• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 229
  • 78
  • 38
  • 24
  • 20
  • 18
  • 10
  • 6
  • 6
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 544
  • 77
  • 65
  • 64
  • 60
  • 59
  • 51
  • 51
  • 48
  • 47
  • 42
  • 39
  • 37
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Methods for Quantitatively Describing Tree Crown Profiles of Loblolly pine (<I>Pinus taeda</I> L.)

Doruska, Paul F. 17 July 1998 (has links)
Physiological process models, productivity studies, and wildlife abundance studies all require accurate representations of tree crowns. In the past, geometric shapes or flexible mathematical equations approximating geometric shapes were used to represent crown profiles. Crown profile of loblolly pine (<I>Pinus taeda</I> L.) was described using single-regressor, nonparametric regression analysis in an effort to improve crown representations. The resulting profiles were compared to more traditional representations. Nonparametric regression may be applicable when an underlying parametric model cannot be identified. The modeler does not specify a functional form. Rather, a data-driven technique is used to determine the shape a curve. The modeler determines the amount of local curvature to be depicted in the curve. A class of local-polynomial estimators which contains the popular kernel estimator as a special case was investigated. Kernel regression appears to fit closely to the interior data points but often possesses bias problems at the boundaries of the data, a feature less exhibited by local linear or local quadratic regression. When using nonparametric regression, decisions must be made regarding polynomial order and bandwidth. Such decisions depend on the presence of local curvature, desired degree of smoothing, and, for bandwidth in particular, the minimization of some global error criterion. In the present study, a penalized PRESS criterion (PRESS*) was selected as the global error criterion. When individual- tree, crown profile data are available, the technique of nonparametric regression appears capable of capturing more of the tree to tree variation in crown shape than multiple linear regression and other published functional forms. Thus, modelers should consider the use of nonparametric regression when describing crown profiles as well as in any regression situation where traditional techniques perform unsatisfactorily or fail. / Ph. D.
152

Studies of Dynamic Bandwidth Allocation for Real-Time VBR Video Applications

Han, Mei 16 May 2005 (has links)
Variable bit rate (VBR) compressed video traffic, such as live video news, is expected to account for a large portion of traffic in future integrated networks. This real-time video traffic has strict delay and loss requirements, and exhibits burstiness over multiple time scales, thus imposing a challenge on network resource allocation and management. The renegotiated VBR (R-VBR) scheme, dynamically allocating resources to capture the burstiness of VBR traffic, substantially increases network utilization while satisfying any desired quality of service (QoS) requirements. This thesis focuses on the performance evaluation of R-VBR in the context of different R-VBR approaches. The renegotiated deterministic VBR (RED-VBR) scheme, proposed by Dr. H. Zhang et al., is thoroughly investigated in this research using a variety of real-world videos, with both high quality and low quality. A new Virtual-Queue-Based RED-VBR is then developed to reduce the implementation complexity of RED-VBR. Simulation results show that this approach obtains a comparable network performance as RED-VBR: relatively high network utilization and a very low drop rate. A Prediction-Based R-VBR based on a multiresolution learning neural network traffic predictor, developed by Dr. Y. Liang, is studied and the use of binary exponential backoff (BEB) algorithm is introduced to efficiently decrease the renegotiation frequency. Compared with RED-VBR, Prediction-Based R-VBR obtains significantly improved network utilization at a little expense of the drop rate. This work provides evaluations of the advantages and disadvantages of several R-VBR approaches, and thus provides a clearer big picture on the performance of the studied R-VBR approaches, which can be used as the basis to choose an appropriate R-VBR scheme to optimize network utilization while enabling QoS for the application tasks. / Master of Science
153

Active Suspension Design Requirements for Compliant Boundary Condition Road Disturbances

Srinivasan, Anirudh 05 September 2017 (has links)
The aim of suspension systems in vehicles is to provide the best balance between ride and handling depending on the operating conditions of a vehicle. Active suspensions are far more effective over a variety of different road conditions compared to passive suspension systems. This is because of their ability to store and dissipate energy at different rates. Additionally, they can even provide energy of their own into the rest of the system. This makes active suspension systems an important topic of research in suspension systems. The biggest benefit of having an active suspension system is to be able to provide energy into the system that can minimize the response of the sprung mass. This is done using actuators. Actuator design in vehicle suspension system is an important research topic and a lot of work has been done in the field but little work has been done to estimate the peak control force and bandwidth required to minimize the response of the sprung mass. These two are very important requirements for actuator design in active suspensions. The aim of this study is estimate the peak control force and bandwidth to minimize the acceleration of the sprung mass of a vehicle while it is moving on a compliant surface. This makes the road surface a bi-lateral boundary and hence, the total system is a combination of the vehicle and the compliant road. Generalized vehicle and compliant road models are created so that parameters can be easily changed for different types of vehicles and different road conditions. The peak control force is estimated using adaptive filtering. A least mean squares (LMS) algorithm is used in the process. A case study with fixed parameters is used to show the results of the estimation process. The results show the effectiveness of an adaptive LMS algorithm for such an application. The peak control force and the bandwidth that are obtained from this process can then be used in actuator design. / Master of Science / Active suspension systems have been proven to be a better option compared to passive suspension systems for a wide variety of operating conditions. Active suspensions typically have an actuator system that produces a force which can reduce the disturbance caused by road inputs in the suspension. The sprung mass of a vehicle is the mass of the body and other components supported by the suspension system and the un-sprung mass is the total mass of the components which are not supported by the suspension or are part of the suspension system. The actuator is typically between the sprung mass and the un-sprung mass. When there is a single event disturbance from the road, the energy is transferred to the sprung mass, which contains the occupants, through the un-sprung mass. The actuator produces a force that reduces this acceleration in the sprung mass and hence improves ride comfort for the occupants of the vehicle. In this thesis, the single event disturbance that has been considered is a compliant road surface. This is a bi-lateral boundary since the vehicle interacts with the compliant elements under the surface of the ground. The aim of this thesis is to develop and implement a method to estimate the peak control force and bandwidth that the actuator needs to produce to eliminate or reduce the acceleration of the sprung mass which is caused by the compliant surface single event disturbance.
154

Micro-Manipulation and Bandwidth Characterization of Ionic Polymer Actuators

Kothera, Curt S. 12 December 2002 (has links)
Ionic polymer materials are a class of electroactive polymers that have been used in recent applications that take advantage of their large bending deflection. Although these materials have been around since the 1960s, it has only been in the last decade that their electromechanical coupling has been discovered. Because their life as a transducer has been relatively short, the underlying mechanisms for their mechanical motion have not yet been fully characterized. Modeling has been performed with ionic polymers, but there is no existing model, to date, that explains all the physical phenomena associated them. The work presented in this document will contribute to the characterization of these materials. To better understand the dehydration effect of ionic polymers operating in an open air environment, research was performed to help characterize this effect. Through the use of frequency response analysis, trends were established showing how the material's response characteristics varied with time, as the polymer dehydrated. These tests were also run at different humidity levels to assess the impact environmental conditions had on the response. It was shown that lower humidity levels cause the system parameters to shift at a higher rate. The two configurations tested were clamped-free and clamped-clamped, in an effort to bound the performance of the actuators for engineering applications. The clamped-clamped condition also facilitated applying tension to the polymers for evaluation of the dehydrating effects. Several comparisons to beam theory were made throughout the analysis, using it as a baseline condition illustrator. Though qualitative results were obtained with the polymers, there was much discrepancy in quantitative measures. This was to be expected though, because ionic polymers are composite actuators that exhibit nonlinear behavior, while uniform beams are linear. Environmental testing was not all that was done, however. Control techniques were applied to improve the closed-loop performance of the actuators. Using proportional-integral control, it was demonstrated that ionic polymers are capable of tracking reference inputs better than it was previously thought. This result will validate future experimentation with ionic polymers for micro-manipulation applications. The simplicity of integral control also eliminated the need for cumbersome model derivations and control system designs, reducing the time necessary to implement and test an actuator. Through the use of this control algorithm, the closed-loop bandwidth was also characterized for the cantilever and clamped-clamped polymers. / Master of Science
155

Dielectric resonator antenna design for UWB applications

Elmegri, Fauzi, See, Chan H., Abd-Alhameed, Raed, Zebiri, Chemseddine, Excell, Peter S. January 2013 (has links)
No / A small dielectric resonator antenna has been designed for ultra wideband (UWB) communication system applications. The antenna element is a rectangular low permittivity ceramic block, with a dielectric constant of 9.4, and the modified T-shaped feed network includes a 50 ohm microstrip line to achieve strong coupling, and some bandwidth enhancement. The antenna performance is simulated and measured over a frequency band extending from 3100 MHz to 5500 MHz; the impedance bandwidth over this interval is 55.8% with VSWR <; 2, making the antenna suitable for UWB applications.
156

CPFSK, FQPSK-JR and ARTM CPM ON A ROCKET LAUNCH

Wolf, Glen, Ortigoza, Saul, Streich, Ronald G. 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / A rocket launch, as high dynamics target, was used to demonstrate X-band tracking and also to verify high bit rate frequency planning while demonstrating significant bandwidth reduction with IRIG standard advanced modulation methods. X-band tracking by a modified 8-foot mobile telemetry antenna was excellent. Three separate S-band transmitters with three separate wraparound antennas were launched as a piggyback payload on an Enhanced Orion sounding rocket at White Sands Missile Range (WSMR) to compare the performance of 10 Mbs and 20 Mbs bit error rate (BER) pattern data transmission from CPFSK, FQPSK-JR and ARTM CPM modulation formats under high dynamic conditions. The test is more remarkable in that another S-band wideband spread spectrum signal was also transmitted with good success. These results show that all three modulation methods performed well during ignition and liftoff, low aspect angle (receiving through the rocket motor plume during ascent from a tracker near the launch pad), spin stabilization antenna lobe fades and payload tumbling. Spectrum pictures are provided to show the dramatic reduction in transmission bandwidth from CPFSK to FQPSK-JR to ARTM CPM. Confirmation of the preflight RF adjacent channel interference planning procedures from IRIG 106-05 is described by spectrum pictures and data quality measurements.
157

Energy Efficiency and Differentiated QoS in Next Generation PONs

Chen, Shen 03 February 2012 (has links)
Energy conservation in next generation Passive Optical Network system (NG-PON) has gained more and more attention. NG-PON system can not only deliver best-effort data traffic, but also real-time data traffic, e.g. voice and video, that have strict bandwidth, delay, and jitter requirements. To meet the energy and service requirements, a NG-PON system must have energy efficiency and differentiated QoS mechanism built in. Few research efforts have been reported on maximizing energy efficiency while maintaining QoS in the fairly new PON system design. We have extended the Upstream Centric Scheme (UCS-based) scheduling scheme idea into a novel QoS-differentiated energy-efficient PON system consisting of two main modules: firstly, the proposed differentiated QoS analytical model is described in detail to reduce the packet delay in the upstream traffic scheduling. The simulations further demonstrate the QoS metrics of the system: packet delay, bandwidth utilization, dropped packet rate, and queue length. Secondly, a novel analysis is proposed for downstream traffic scheduling with limited service discipline at Optical Line Terminal (OLT) side under the UCS-based Green Bandwidth Allocation (GBA) framework. We, first, derive the mean packet delay expression of this model. Then, the sleep time for each Optical Network Unit (ONU) is derived by setting identical upstream/downstream transmission cycle time. Based on the analytical model, an approach is developed to save the maximum energy in a dynamic PON system while without violating the delay requirement. Moreover, simulation is conducted to verify the developed analytical model and the proposed approach. In the end, considering the differentiated QoS and downstream traffic scheduling, an algorithm of the energy efficient scheduling scheme is proposed as well under the UCS-based GBA.
158

Energy Efficiency and Differentiated QoS in Next Generation PONs

Chen, Shen 03 February 2012 (has links)
Energy conservation in next generation Passive Optical Network system (NG-PON) has gained more and more attention. NG-PON system can not only deliver best-effort data traffic, but also real-time data traffic, e.g. voice and video, that have strict bandwidth, delay, and jitter requirements. To meet the energy and service requirements, a NG-PON system must have energy efficiency and differentiated QoS mechanism built in. Few research efforts have been reported on maximizing energy efficiency while maintaining QoS in the fairly new PON system design. We have extended the Upstream Centric Scheme (UCS-based) scheduling scheme idea into a novel QoS-differentiated energy-efficient PON system consisting of two main modules: firstly, the proposed differentiated QoS analytical model is described in detail to reduce the packet delay in the upstream traffic scheduling. The simulations further demonstrate the QoS metrics of the system: packet delay, bandwidth utilization, dropped packet rate, and queue length. Secondly, a novel analysis is proposed for downstream traffic scheduling with limited service discipline at Optical Line Terminal (OLT) side under the UCS-based Green Bandwidth Allocation (GBA) framework. We, first, derive the mean packet delay expression of this model. Then, the sleep time for each Optical Network Unit (ONU) is derived by setting identical upstream/downstream transmission cycle time. Based on the analytical model, an approach is developed to save the maximum energy in a dynamic PON system while without violating the delay requirement. Moreover, simulation is conducted to verify the developed analytical model and the proposed approach. In the end, considering the differentiated QoS and downstream traffic scheduling, an algorithm of the energy efficient scheduling scheme is proposed as well under the UCS-based GBA.
159

Speech Enhancement By Bandwidth Extension - A Codebook Based Approach In G.729 Compressed Domain

Deshpande, Murali Mohan 02 1900 (has links) (PDF)
No description available.
160

Coplanar Capacitive Coupled Probe Fed Ultra-Wideband Microstrip Antennas

Veeresh, Kasabegoudar G 07 1900 (has links)
Modern wireless communication systems call for ultra wideband operations to meet the continuous growth in the number of users of these systems. Since antenna is an integral part of any wireless communication system (transmitter or receiver), designing antennas with good gain over large bandwidth needs to be considered first. To meet the popular demand, wireless communication systems should be as cheap as possible which require antennas with small size, light weight, low profile and low cost, and that are easy to fabricate and assemble. A type of antenna that satisfies most of these requirements is the microstrip antenna. Most of the wideband techniques for microstrip antennas utilize complicated geometries such as stacked multiple metal/dielectric layers, complicated feed arrangements etc., which elude the primary attraction of microstrip antennas. On the other hand, single layer suspended configurations are considered the best choice as these are simple to fabricate and assemble. The objective of this research is to investigate simple microstrip antennas with large bandwidth. A single layer suspended microstrip configuration was chosen for the purpose. In the first part of the research, the bandwidth was increased to about 50% with linear phase characteristics by optimizing the feed configurations while retaining the overall simplicity. This study has resulted in proposing a criterion for obtaining maximum bandwidth in the suspended microstrip configuration. An analytical model has been developed for such an antenna configuration. Although several analytical tools are available for the microstrip antenna analysis, equivalent circuit based approach proves to be a simple one and offers convincingly accurate results. Another advantage of the proposed equivalent circuit modeling scheme is that it is suitable for computer aided design (CAD). In order to make this approach even more useful, the antenna designed in the first part was modified to meet desired specifications such as reduction in the air gap to make the antenna compact, symmetrical patterns, making antenna circularly polarized (LHCP or RHCP) without changing the feed configuration. Nearly symmetrical patterns were obtained throughout the band of operation by modifying the profile of patch close to the feed strip. Circular polarization (CP) operation has been obtained from the basic antenna by cutting a diagonal slot on the radiator patch. Here the slot orientation decides the type of CP i.e., LHCP or RHCP. In this work obtained of 7.1% axial ratio (3dB) bandwidth with other characteristics unaffected. The overall height of the antenna is reduced by 55% by cutting a slot and re-optimizing the feed strip dimensions. These studies emphasize flexibility offered by the design approach in realizing practical antennas for various applications.

Page generated in 0.052 seconds