• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 2
  • Tagged with
  • 19
  • 19
  • 17
  • 16
  • 15
  • 15
  • 15
  • 14
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of leaf area reduction on water use of barley (Hordeum vulgare L.)

Minyard, Jerry Hal, 1949- January 1973 (has links)
No description available.
2

Physiological traits for screening drought resistance in barley

Trần Văn Điền, 1961- January 1997 (has links) (PDF)
Bibliography: leaves 187-203. Evaluates critically a number of physiological traits which may be related to drought resistance in cereals and examines the feasibility of using these screening techniques in selecting more drought resistant genotypes of barley for South Australia.
3

The performance of selected small grain cultivars under an irrigation gradient

Ashley, Roger Orrin, 1953- January 1989 (has links)
Differential adaptations of barley (Hordeum vulgare L.) and wheat (Triticum spp.) genotypes suggest that they be evaluated under multi-environmental conditions. The objectives of this study were to determine if small grain genotypes, bred for various moisture conditions, respond differently in terms of yield, water use, and rooting pattern to contrasting moisture conditions. Eight small grain genotypes were compared under a gradient of water from 89 to 404 mm (plus 254 mm of stored water) in a field study at Marana, AZ. A barley bred for low input conditions had greater root density in the subsoil and used moisture earlier in the season when compared to a high input barley (WestBred Gustoe). The cultivars bred for high input conditions required more water for optimum yield compared to those bred for low input conditions.
4

Water stress and remobilization of dry matter and nitrogen in wheat and barley genotypes

Sarvestani, Zeinolabedin Tahmasebi. January 1996 (has links) (PDF)
Bibliography: leaves 223-247. Effects of water availability during grain filling is examined in wheat (Triticum aestivum L.) and barley (Hordum vulgare L.) genotypes. The study tests the accumulation of dry matter (DM) and nitrogen (N) in the grain and also their remobilization from the shoot to the grain. Water stress during grain filling was found to reduce DM and N accumulation and also to increase N concentration in both wheat and barley grain.
5

Water stress and remobilization of dry matter and nitrogen in wheat and barley genotypes / by Zeinolabedin Tahmasebi Sarvestani.

Sarvestani, Zeinolabedin Tahmasebi January 1995 (has links)
Bibliography: leaves 223-247. / xiii, 247 p. : ill, maps ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Effects of water availability during grain filling is examined in wheat (Triticum aestivum L.) and barley (Hordum vulgare L.) genotypes. The study tests the accumulation of dry matter (DM) and nitrogen (N) in the grain and also their remobilization from the shoot to the grain. Water stress during grain filling was found to reduce DM and N accumulation and also to increase N concentration in both wheat and barley grain. / Thesis (Ph.D.)--University of Adelaide, Dept. of Plant Science, 1996
6

Crop Coefficients for Estimating Small Grain Water Use, 2002

Ottman, Michael 10 1900 (has links)
Crop coefficients are used to estimate water use from reference evapotranspiration values provided by weather stations. Two varieties of barley and durum were planted at the Maricopa Agricultural Center in late November and early January. Water use was estimated from neutron probe readings and crop coefficients were calculated by dividing water use by reference evapotranspiration. The crop coefficients calculated in this study peaked close to 1.2, similar to published values, except for the short season barley cultivar Barcott which had much lower values than the other cultivars.
7

Crop Coefficients for Estimating Small Grain Water Use, 2003

Ottman, Michael 10 1900 (has links)
Crop coefficients are used to estimate water use from reference evapotranspiration values provided by weather stations. Two varieties of barley and durum were planted at the Maricopa Agricultural Center in late November and early January. Water use was estimated from neutron probe readings and crop coefficients were calculated by dividing water use by reference evapotranspiration. The crop coefficients calculated in this study peaked at 1.0 or less in contrast to published values which generally peak around 1.2. The crop coefficients were lower at the later planting, and there appear to be differences between barley and durum and among barley varieties.
8

Crop Coefficients for Estimating Small Grain Water Use, 2004

Ottman, Michael 10 1900 (has links)
Crop coefficients are used to estimate water use from reference evapotranspiration values provided by weather stations. Four varieties of barley and durum were planted at the Maricopa Agricultural Center early December and early January and one durum variety was planted at the Yuma Valley Agricultural Center in late December and mid-February. Water use was estimated from neutron probe readings and crop coefficients were calculated by dividing water use by reference evapotranspiration. The crop coefficients calculated in this study peaked from 1.0 to 1.3, and the peak averaged about 1.16. Some differences were detected among planting dates and varieties, but it has yet to be determined if these differences are of practical significance.
9

Late Season Water and Nitrogen Effects on Durum Quality, 1995 (Final)

Ottman, M. J., Doerge, T. A., Martin, E. C. 10 1900 (has links)
Durum grain quality is affected by many factors, but water and nitrogen are factors that the grower can control. The purpose of this research was to determine 1) the nitrogen application rate required at pollen shed to maintain adequate grain protein levels if irrigation is excessive or deficient during grain fill and 2) if nitrogen applications during grain fill can elevate grain protein. Field research was conducted at the Maricopa Agricultural Center using the durum varieties Duraking, Minos, and Turbo. The field was treated uniformly until pollen shed when nitrogen was applied at rates of 0, 30, and 60 lbs/acre. During grain fill, the plots were irrigated based on 30, 50, or 70% moisture depletion. In a separate experiment, nitrogen fertilizer was applied at a rate of 30 lbs N/acre at pollen shed only, pollen shed and the first irrigation after pollen shed, and pollen shed and the first and second irrigation after pollen shed. Irrigation had no effect on grain protein level, although increasing nitrogen rates at pollen shed from 0 to 30 and 30 to 60 lbs N/acre increased protein by 1 percentage point. Nitrogen fertilizer application at the first irrigation after pollen shed increased grain protein content from 10.4 to 11.4% and application at the first and second irrigation after pollen shed increased grain protein content further to 11.9% averaged over varieties. Irrigation management during grain fill may not play as large a role in controlling grain protein content as was originally thought except perhaps on heavy soils, and nitrogen fertilizer application during grain fill may not be too late to increase grain protein content.
10

Intensive Cereal Management for Durum Production, Buckeye, 1996

Husman, S. H., Ottman, M. J. 10 1900 (has links)
No description available.

Page generated in 0.0646 seconds