• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microbiology of basalts targeted for deep geological carbon sequestration : field observations and laboratory experiments

Lavalleur, Heather J. 15 June 2012 (has links)
With rising concentrations of CO₂ in the Earth's atmosphere causing concern about climate change, many solutions are being presented to decrease emissions. One of the proposed solutions is to sequester excess CO₂ in geological formations such as basalt. The deep subsurface is known to harbor much of the microbial biomass on earth and questions abound as to how this deep life is going to respond to the injection of CO₂. Many studies have used model microorganisms to demonstrate the ability of microbes to aid in the safe, permanent sequestration of CO₂ in the subsurface. The objective of this research is to characterize the microbial community present in the basalts at the Wallula pilot carbon sequestration well prior to the injection of CO₂ and then perform laboratory studies to determine how the native microbial community will respond to carbon sequestration conditions. Six samples were collected from the Wallula pilot well prior to the injection of CO₂ into the system. The microorganisms in these samples were characterized by pyrosequencing of 16S rRNA genes, revealing a community dominated by the Proteobacteria, Firmicutes, and Actinobacteria. The organisms detected were related to microbes known to metabolize hydrogen, sulfur, and single carbon compounds. These microorganisms may be stimulated in formations located at the fringe of the pool of injected CO₂. Laboratory studies revealed that the native microbial community suffered a two order of magnitude loss of population upon exposure to CO₂ under carbon sequestration conditions. The community also shifted from being dominated by Proteobacteria prior to CO₂ exposure to being dominated by Firmicutes after exposure. Specifically, the genus Alkaliphilus, which was previously undetected, appeared after CO₂ exposure and became dominant. The dominance of Alkaliphilus, along with other rare organisms which did not compose a majority of the population prior to the introduction of CO₂ to the system, indicates that members of the rare biosphere may be better adapted to changing environmental conditions specific to CO₂ sequestration than other indigenous cells. Thus, the rare biosphere should be examined closely as part of any environmental study, as these minority microorganisms may be the first indication of perturbation or impact. / Graduation date: 2013

Page generated in 0.0611 seconds