Spelling suggestions: "subject:"case excision repair"" "subject:"case excisions repair""
11 |
OXIDATIVE DAMAGE TO DNA IN ALZHEIMER'S DISEASESoman, Sony 01 January 2013 (has links)
Previous studies from our laboratory and others show a significant increase in levels of both nuclear and mitochondrial DNA and RNA oxidation in vulnerable brain regions in the progression of Alzheimer’s disease (AD). Although total DNA oxidation is increased in AD it remains unclear whether oxidative damage is widespread throughout the genome or is concentrated to specific genes. To test the hypothesis that specific genes are more highly oxidized in the progression of AD, we propose to quantify the percent oxidative damage in genes coding for proteins shown to be altered in the progression of AD using quantitative/real-time polymerase chain reaction (qPCR/ RT-PCR). To further test the hypothesis that diminished DNA repair capacity in the progression of AD contributes to increased DNA oxidation we will use custom PCR arrays and qPCR, Western blot analysis and activity assays to quantify changes in enzymes involved in base excision repair (BER).
In order to carry out these studies tissue specimens from superior and middle temporal gyri (SMTG) and inferior parietal lobe (IP), as well as, a non-vulnerable region, the cerebellum (CER) will be analyzed from normal control (NC) subjects and subjects throughout the progression of AD including those with preclinical AD (PCAD), mild cognitive impairment (MCI), and late stage AD (LAD). We will also analyze specimens from diseased control subjects (DC; Frontotemporal dementia (FTD) and dementia with Lewy bodies (DLB)) to determine if the changes we observe in AD are specific.
|
12 |
Trinucleotide Repeat Instability is Modulated by DNA Base Lesions and DNA Base Excision RepairBeaver, Jill M 30 September 2016 (has links)
Trinucleotide repeat (TNR) expansions are the cause of over 40 human neurodegenerative diseases, and are linked to DNA damage and base excision repair (BER). We explored the role of DNA damage and BER in modulating TNR instability through analysis of DNA structures, BER protein activities, and reconstitution of repair using human BER proteins and synthesized DNA containing various types of damage. We show that DNA damage and BER can modulate TNR expansions by promoting removal of a TNR hairpin through coordinated activities of BER proteins and cofactors. We found that during repair in a TNR hairpin, coordination between the 5’-flap endonuclease activity of flap endonuclease 1 (FEN1), 3’-5’ exonuclease activity of AP endonuclease 1 (APE1), and activity of DNA ligase I (LIG I) can resolve the double-flap structure produced during BER in the hairpin loop. The resolution of the double-flap structure resulted in hairpin removal and prevention or attenuation of TNR expansions and provides the first evidence that coordination among BER proteins can remove a TNR hairpin. We further explored the role of BER cofactors in modulating TNR instability and found that the repair cofactor proliferating cell nuclear antigen (PCNA) facilitates genomic stability by promoting removal of a TNR hairpin. Hairpin removal was accomplished by altering dynamic TNR structures to allow more efficient FEN1 cleavage and DNA polymerase β (pol β) synthesis and stimulating the activity of LIG I. This study provides the first evidence that a DNA repair cofactor plays an important role in modulating TNR instability. Finally, we explored the effects of sugar modifications in abasic sites on activities of BER proteins and BER efficiency during repair in a TNR tract. We found that an oxidized sugar inhibits the activities of BER enzymes, interrupting their coordination and preventing efficient repair. Inefficient repair results in accumulation of repair intermediates with DNA breaks, contributing to genomic instability. Our results indicate that DNA base lesions and BER play a crucial role in modulating TNR instability. The research presented herein provides a molecular basis for further developing BER as a target for prevention and treatment of neurodegenerative diseases caused by TNR expansion.
|
13 |
Roles of DNA Base Excision Repair in Maintaining the Integrity of DNA MethylationZhou, Jing 15 November 2013 (has links)
DNA methylation and demethylation are involved in regulation of gene expression. CpG clusters have been identified as hotspots of oxidative damages and mutagenesis. DNA base excision repair can remove oxidative DNA damage on CpG clusters and mediate an active DNA demethylation pathway. In this study, we examined the molecular mechanisms underlying interactions among DNA methylation, demethylation and BER. Our results demonstrated that a single 5-methylcytosine did not exhibit a significant effect on BER. Surprisingly we found that the abasic site completely inhibited the activity of thymine DNA glycosylase (TDG) leading to the sustainment of the mismatch efficiently extended by pol β. Interestingly, APE1 3’-5’ exonuclease could removed the mismatch. Our results demonstrate a molecular mechanisms underlying DNA base lesion and BER in maintenance of a normal DNA methylation pattern and a critical role of APE1 to combat pol β extension of the mismatch thereby reducing the introduction of mutagenesis.
|
14 |
Clarifying the Role of the CST Complex in DNA Replication and RepairWysong, Brandon Carter 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Ends of linear chromosomes are maintained by specialized structures known as telomeres. These structures are protected by a number of essential protein complexes including the shelterin complex and CST (CTC1 – STN1 – TEN1) complex. CST is an RPA-like ssDNA binding protein that is vital for telomere length maintenance via inhibition of telomerase and stimulation of DNA polymerase α -primase during C-strand fill-in synthesis. CST is also known to possess additional genome-wide roles in regulating DNA replication and repair including helping facilitate replication re-start at stalled forks, activating checkpoint signaling at double-strand breaks, and promoting replication origin firing. Proper and efficient repair of DNA is critical in order to protect the integrity of the genome and prevent extreme mutagenesis. Telomeres have a strong predisposition to oxidative DNA damage in the form of 8-oxoguanine caused by exposure to reactive oxygen species and free radicals. These oxidative lesions are repaired by the base-excision repair (BER) pathway. Previous work has implicated telomeric proteins such as the shelterin complex in mediating BER. Here we show for the first time that the CST complex and individual subunits robustly stimulate a myriad of proteins involved in the BER pathway including Pol β, APE1, FEN1, and LIGI. CST’s ability to augment these BER-associated proteins could be instrumental in promoting efficient DNA repair. Additionally, we find that CTC1 and STN1 are able to significantly enhance the polymerase activity of Pol δ and Pol α on both random-sequence and telomeric-sequence DNA substrates in vitro. What is more, we establish the ability of CST to resolve G4 structure and promote Pol δ synthesis, which we predict is a key feature of CST’s involvement in DNA replication at telomeres, which are known to form replication-inhibiting G4’s. Our results define important mechanistic insight into CST’s role in DNA replication and repair, and provide a strong foundation for future studies relating defective telomere maintenance to aging disorders and cancers which impact human health.
|
15 |
Assessment And In Vitro Repair Of Damaged Dna Templates From Forensic StainsHall, Ashley 01 January 2005 (has links)
DNA extracted from biological stains is often intractable to analysis. This may due to a number of factors including a low copy number (LCN) of starting molecules, the presence of soluble inhibitors or damaged DNA templates. Remedies may be available to the forensic scientist to deal with LCN templates and soluble inhibitors but none presently exist for damaged DNA. In fact, only recently has the biochemical nature, the extent of DNA damage in physiological stains and the point at which the damage inflicted upon a particular sample precludes the ability to obtain a genetic profile for purposes of identification been examined. The primary aims of this work were first to ascertain the types of DNA damage encountered in forensically relevant stains, correlating the occurrence this damage with the partial or total loss of a genotype, and then to attempt the repair of the damage by means of in vitro DNA repair systems. The initial focus of the work was the detection of damage caused by exogenous, environmental sources, primarily UV irradiation, but also factors such as heat, humidity and microorganism growth. Results showed that the primary causes of the damage that resulted in profile loss were strand breaks, both single and double stranded, as well as modifications to the DNA structure that inhibited its amplification. Armed with this knowledge, the next focus was the repair of the damage by means of in vitro DNA systems. Efforts have been concentrated on single strand break/gap repair and translesion synthesis assays. By modifying the assays and employing various combinations of the systems, a genetic signature has been recovered from previously intractable samples. Additionally, the effects that various storage conditions have on the DNA in physiological stains stored in a laboratory were examined. The optimal long term storage conditions for biological evidence has been a matter of debate in the forensic community for some time. But, no comprehensive study had previously been undertaken to describe the effects of dehydration and temperature on degradation and the ability to obtain a genetic profile on bloodstains kept in different types of storage media at a range of temperatures. To examine this, bloodstains were either allowed to dry overnight or placed in the storage medium while still wet and were stored at room temperature, 4oC or 30oC for up to four years. Results showed that specimens dehydrated prior to storage were very stable, and these bloodstains showed no degradation or loss of a genetic profile for up to four years.
|
16 |
Processing of Cisplatin Interstrand crosslinks (ICLs) by DNA repair proteinsDangeti, Venkata Srinivas Mohan Nimai January 2012 (has links)
No description available.
|
17 |
Elucidating a role for uracil DNA glycosylase (UNG)-initiated DNA base excision repair in the cellular sensitivity to the antifolate, pemetrexedWeeks, Lachelle Dawn 21 February 2014 (has links)
No description available.
|
18 |
The Role of Base Excision Repair and Mismatch Repair Proteins in the Processing of Cisplatin Interstrand Cross-LinksSawant, Akshada S. January 2014 (has links)
No description available.
|
19 |
AtZDP, a Plant 3' DNA Phosphatase, Involved in DNA RepairValsecchi, Isabel January 2008 (has links)
<p>DNA bases can be modified by endogenous agents (e.g. oxidized by products of respiration and photosynthesis or methylated by gene silencing processes) as well as by environmental agents (e.g. oxidized by UV light). In the process of removing modified bases, a 3’-phosphate group is sometimes left in the resulting gap, and has to be removed since it blocks the incorporation of a new nucleotide by DNA polymerase. The aim of this thesis was the characterization of AtZDP, a plant enzyme with a DNA 3’-phosphatase activity.</p><p>By homologous modeling, the existence of four domains was predicted in AtZDP, three independent zinc-finger and one DNA 3’-phosphatase domains. AtZDP was found to be localized in the nucleus by bimolecular fluorescence complementation. Western blotting analysis showed that the enzyme was ubiquitously expressed in plant tissues.</p><p>AtZDP was found in a 600,000 molecular-weight protein complex by gel chromatography and glycerol gradient sedimentation centrifugation. The fractions containing AtZDP in the complex displayed 3’-DNA phosphatase activity as shown by desphosphorylation of a DNA oligonucleotide with a 3’-phosphate terminus. Also fractions of the gel chromatography corresponding to lower molecular weight showed 3’-DNA phosphatase activity, but antibodies against AtZDP did not recognize this fraction inferring that in plants, at least another protein with similar activity exists.</p><p>In mammals, polynucleotide kinase, an enzyme with the same activity phosphatase activity as AtZDP, is involved in single-strand and double-strand repair pathways. To elucidate if AtZDP could be part of similar pathways, different double strand and single-strand oligonucleotides with 3’-phosphate termini were separately incubated with AtZDP. All substrates were dephosphorylated by AtZDP, assuming that this enzyme could potentially be involved in double-strand DNA repair. </p><p>A double-strand oligonucleotide containing a one-bp gap with a 3’-phosphate terminus was repaired by a leaf protein extract. The activities of a 3’-DNA phosphatase, a flap 5’ to 3’ endonuclease-like, a DNA polymerase and a DNA ligase were observed. The presence of these enzymes revealed that these damages are in plants predominantly repaired by long-patch base excision repair.</p>
|
20 |
DNA Repair Mechanisms, Aflatoxin B1-Induced DNA Damage and CarcinogenesisMULDER, JEANNE E 18 October 2013 (has links)
The studies described in this thesis investigated the relationship between DNA repair mechanisms, aflatoxin B1 (AFB1)-induced DNA damage and carcinogenesis. Mice deficient in 8-oxoguanine glycosylase (OGG1, the rate-limiting enzyme in repair of oxidized guanine), mice heterozygous for OGG1, and wild type mice, were exposed to a single tumourigenic dose (50 mg/kg) of AFB1. Neither ogg1 genotype nor AFB1 treatment affected levels of oxidized guanine in lung or liver 2 h post-treatment. ogg1 (-/-) mice had increased susceptibility to AFB1 toxicity, as reflected by increased mortality within one week of AFB1 exposure. AFB1 treatment did not significantly increase lung or liver tumourigenesis compared to DMSO controls. No difference was observed between ogg1 genotypes, although a non-significant trend towards AFB1-treated ogg1 (-/-) mice being more susceptible to tumourigenicity was apparent. Overall, deletion of ogg1 did not significantly affect AFB1-induced DNA damage or tumourigenicity, suggesting that oxidized guanine may not be a major contributor to AFB1-induced tumourigenesis.
The effects of AFB1 on DNA repair were assessed in p53 (a protein implicated in regulation of DNA repair) wild type and heterozygous mice. p53 (+/+) mice treated with 0, 0.2 or 1.0 ppm AFB1 for 26 weeks had increased nucleotide excision repair (NER) activities in lung and liver compared to control, which may represent an adaptive response to AFB1-derived DNA adducts. In p53 (+/-) mice, the AFB1-induced increase in NER was significantly attenuated, suggesting that loss of one allele of p53 limits the ability of NER to up-regulate in response to AFB1-induced DNA damage.
Twenty-six week exposure to AFB1 did not affect base excision repair (BER) in p53 (+/+) mouse lung or liver compared to control. BER was significantly decreased in livers from mice exposed to 1.0 ppm AFB1 compared to those exposed to 0.2 ppm AFB1, a result that was not due to liver cell death or to altered levels of OGG1 protein. In lungs and livers of p53 (+/-) mice, BER activity was unchanged by AFB1. As such, the difference in BER response between 0.2 ppm and 1.0 ppm AFB1 treatment seen in the p53 (+/+) mice appears to be p53 dependent. / Thesis (Ph.D, Pharmacology & Toxicology) -- Queen's University, 2013-10-17 22:24:31.577
|
Page generated in 0.0688 seconds