• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aplicações das bases de Groebner

Silva Junior, Danton Pereira da January 1999 (has links)
Neste trabalho estudamos os homomorfismos entre anéis de polinômios do ponto de vista da teoria de bases de Groebner. Em particular, determinamos o núcleo de um tal homomorfismo e desenvolvemos um método para determinar quando este é sobrejetivo. Estes resultados são então generalizados para anéis quocientes. O estudo de tais homomorfismos nos permite determinar os polinômos minimais de elementos em extensões de corpos, bem como encontrar soluções para um problema de programação inteira. / In this work we study the homomorphisms between polynomial rings as an application of the Groebner basis theory. In particular, we determine generators for the kemel of such a homomorphism and we give a method to determine whether it is onto. We then generalize these results to the case of quocient rings. The study of these homomorphisms allows us to determine mini mal polynomials of elements in field extensions, as well as to find solutions to an integer programming problem.
2

Aplicações das bases de Groebner

Silva Junior, Danton Pereira da January 1999 (has links)
Neste trabalho estudamos os homomorfismos entre anéis de polinômios do ponto de vista da teoria de bases de Groebner. Em particular, determinamos o núcleo de um tal homomorfismo e desenvolvemos um método para determinar quando este é sobrejetivo. Estes resultados são então generalizados para anéis quocientes. O estudo de tais homomorfismos nos permite determinar os polinômos minimais de elementos em extensões de corpos, bem como encontrar soluções para um problema de programação inteira. / In this work we study the homomorphisms between polynomial rings as an application of the Groebner basis theory. In particular, we determine generators for the kemel of such a homomorphism and we give a method to determine whether it is onto. We then generalize these results to the case of quocient rings. The study of these homomorphisms allows us to determine mini mal polynomials of elements in field extensions, as well as to find solutions to an integer programming problem.
3

Aplicações das bases de Groebner

Silva Junior, Danton Pereira da January 1999 (has links)
Neste trabalho estudamos os homomorfismos entre anéis de polinômios do ponto de vista da teoria de bases de Groebner. Em particular, determinamos o núcleo de um tal homomorfismo e desenvolvemos um método para determinar quando este é sobrejetivo. Estes resultados são então generalizados para anéis quocientes. O estudo de tais homomorfismos nos permite determinar os polinômos minimais de elementos em extensões de corpos, bem como encontrar soluções para um problema de programação inteira. / In this work we study the homomorphisms between polynomial rings as an application of the Groebner basis theory. In particular, we determine generators for the kemel of such a homomorphism and we give a method to determine whether it is onto. We then generalize these results to the case of quocient rings. The study of these homomorphisms allows us to determine mini mal polynomials of elements in field extensions, as well as to find solutions to an integer programming problem.
4

Sistemas de equações polinomiais e base de Gröbner

Vilanova, Fábio Fontes 10 April 2015 (has links)
The main objective of this dissertation is to present an algebraic method capable of determining a solution, if any, of a non linear polynomial equation systems using Gröbner basis. In order to accomplish that, we first present some concepts and theorems linked to polynomial rings with several undetermined and monomial ideals where we highlight the division extended algorithm, the Hilbert Basis and the Buchberger´s algorithm. Beyond that, using basics of Elimination and Extension Theorems, we present an algebraic solution to the map coloring that use 3 colors as well as a general solution to the Sudoku puzzle. / O objetivo principal desse trabalho é, usando bases de Gröbner, apresentar um método algébrico capaz de determinar a solução, quando existir, de sistemas de equações polinomiais não necessariamente lineares. Para tanto, necessitamos inicialmente apresentar alguns conceitos e teoremas ligados a anéis de polinômios com várias indeterminadas e de ideais monomiais, dentre os quais destacamos o algoritmo extendido da divisão, o teorema da Base de Hilbert e o algoritmo de Buchberger. Além disso, usando noções básicas da Teoria de eliminação e extensão, apresentamos uma solução algébrica para o problema da coloração de mapas usando três cores, bem como um solução geral para o puzzle Sudoku.
5

Bases de Hilbert / Hilbert Basis

Marcelo Hashimoto 28 February 2007 (has links)
Muitas relações min-max em otimização combinatória podem ser demonstradas através de total dual integralidade de sistemas lineares. O conceito algébrico de bases de Hilbert foi originalmente introduzido com o objetivo de melhor compreender a estrutura geral dos sistemas totalmente dual integrais. Resultados apresentados posteriormente mostraram que bases de Hilbert também são relevantes para a otimização combinatória em geral e para a caracterização de certas classes de objetos discretos. Entre tais resultados, foram provadas, a partir dessas bases, versões do teorema de Carathéodory para programação inteira. Nesta dissertação, estudamos aspectos estruturais e computacionais de bases de Hilbert e relações destas com programação inteira e otimização combinatória. Em particular, consideramos versões inteiras do teorema de Carathéodory e conjecturas relacionadas. / There are several min-max relations in combinatorial optimization that can be proved through total dual integrality of linear systems. The algebraic concept of Hilbert basis was originally introduced with the objective of better understanding the general structure of totally dual integral systems. Some results that were proved later have shown that Hilbert basis are also relevant to combinatorial optimization in a general manner and to characterize certain classes of discrete objects. Among such results, there are versions of Carathéodory\'s theorem for integer programming that were proved through those basis. In this dissertation, we study structural and computational aspects of Hilbert basis and their relations to integer programming and combinatorial optimization. In particular, we consider integer versions of Carathéodory\'s theorem and related conjectures.
6

Bases de Hilbert / Hilbert Basis

Hashimoto, Marcelo 28 February 2007 (has links)
Muitas relações min-max em otimização combinatória podem ser demonstradas através de total dual integralidade de sistemas lineares. O conceito algébrico de bases de Hilbert foi originalmente introduzido com o objetivo de melhor compreender a estrutura geral dos sistemas totalmente dual integrais. Resultados apresentados posteriormente mostraram que bases de Hilbert também são relevantes para a otimização combinatória em geral e para a caracterização de certas classes de objetos discretos. Entre tais resultados, foram provadas, a partir dessas bases, versões do teorema de Carathéodory para programação inteira. Nesta dissertação, estudamos aspectos estruturais e computacionais de bases de Hilbert e relações destas com programação inteira e otimização combinatória. Em particular, consideramos versões inteiras do teorema de Carathéodory e conjecturas relacionadas. / There are several min-max relations in combinatorial optimization that can be proved through total dual integrality of linear systems. The algebraic concept of Hilbert basis was originally introduced with the objective of better understanding the general structure of totally dual integral systems. Some results that were proved later have shown that Hilbert basis are also relevant to combinatorial optimization in a general manner and to characterize certain classes of discrete objects. Among such results, there are versions of Carathéodory\'s theorem for integer programming that were proved through those basis. In this dissertation, we study structural and computational aspects of Hilbert basis and their relations to integer programming and combinatorial optimization. In particular, we consider integer versions of Carathéodory\'s theorem and related conjectures.

Page generated in 0.0974 seconds