Spelling suggestions: "subject:"cases dde dados desbalanceados"" "subject:"cases dde dados desbalanceado""
1 |
Utilização de técnicas de inteligência artificial para classificação de crianças cardiopatas em base de dados desbalanceadasTavares, Thiago Ribeiro 31 January 2013 (has links)
Submitted by João Arthur Martins (joao.arthur@ufpe.br) on 2015-03-12T17:23:07Z
No. of bitstreams: 2
Dissertacao Thiago Tavares.pdf: 3582760 bytes, checksum: dfee6c424fc987631aeae3fbd4e4e524 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Approved for entry into archive by Daniella Sodre (daniella.sodre@ufpe.br) on 2015-03-13T13:23:44Z (GMT) No. of bitstreams: 2
Dissertacao Thiago Tavares.pdf: 3582760 bytes, checksum: dfee6c424fc987631aeae3fbd4e4e524 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-13T13:23:44Z (GMT). No. of bitstreams: 2
Dissertacao Thiago Tavares.pdf: 3582760 bytes, checksum: dfee6c424fc987631aeae3fbd4e4e524 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2013 / As doenças cardiovasculares são as que mais matam no Brasil e no mundo. Dessas,
a cardiopatia congênita, uma malformação cardíaca presente desde o nascimento, acomete 8
a 10 em cada 1000 nascidos vivos e aproximadamente 1/3 deles necessitam de tratamento já
no primeiro ano de vida. Inúmeros trabalhos demonstram que quanto antes for estabelecido o
diagnóstico maiores serão as chances de sucesso no tratamento. O atendimento de crianças com
suspeita de cardiopatia gera uma grande quantidade de informação, porém a diferenciação entre
sinais e sintomas normais ou patológicos logo no início, por exemplo, na marcação da consulta,
pode ser aspecto fundamental para agilizar o atendimento. Há algum tempo a Inteligência
Artificial, mais especificamente a subárea de Mineração de Dados, tem sido utilizada como
ferramenta de suporte à decisão médica em diversas especialidades, inclusive na cardiologia.
Apesar da maioria das aplicações nesse contexto utilizarem Árvore de Decisão para classificação
devido ao seu poder de interpretação e extração de regras, Máquinas de Vetor de Suporte
(Support Vector Machines - SVM) têm demonstrado, em várias aplicações, um maior poder de
generalização apresentando melhores resultados. No entanto, esse tipo de algoritmo, caixa-preta,
não produz um conhecimento explícito de modo que um médico, especialista no domínio, possa
interpretá-lo. A proposta desse trabalho é o desenvolvimento de um sistema de apoio à decisão
médica que auxilie na detecção de cardiopatias em crianças, a partir de dados iniciais, como
gênero, peso, altura e presença de sopros, com o objetivo de priorizar o seu atendimento médico.
Técnicas para lidar com bases de dados desbalanceadas, tais como SMOTE e SVM com pesos
foram utilizadas a fim de melhorar os resultados com relação a classificadores convencionais.
Além disso, foi possível realizar a extração de regras a partir dos resultados obtidos pela SVM.
Segundo os especialistas, os resultados obtidos viabilizam a utilização do sistema de apoio
à decisão que pode ser incorporado à prática clínica para melhorar a qualidade dos serviços
prestados.
|
2 |
Adição de ruído durante o processo de treinamento de redes neurais MLP : Uma abordagem para o aprendizado a partir de bases de dados pequenas e desbalanceadasSILVA, Icaman Botelho Viegas da 31 January 2011 (has links)
Made available in DSpace on 2014-06-12T15:56:06Z (GMT). No. of bitstreams: 2
arquivo2738_1.pdf: 2219821 bytes, checksum: e0060e817bd6a925ad67e0971641acff (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2011 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Classificadores têm sido largamente aplicados nos mais diversos campos científicos e industriais, em geral obtendo bons desempenhos. Entretanto, quando aplicados a problemas cuja quantidade de dados disponível para o treinamento é limitada (bases de dados pequenas) ou quando estes dados apresentam um desbalanceamento entre as classes (bases de dados desbalanceadas), a maioria dos classificadores obtém um desempenho pobre. O poder de generalização do classificador é reduzido quando bases de dados pequenas são utilizadas durante o processo de treinamento, enquanto que em bases de dados desbalanceadas, as classes com maior representatividade e menor importância tendem a ser favorecidas. Inerentes a diversos problemas do mundo real, conjuntos de dados pequenos e desbalanceados representam uma limitação a ser superada por algoritmos de aprendizagem para produção de classificadores precisos e confiáveis. Neste trabalho é proposta uma abordagem baseada na adição de ruído Gaussiano durante o processo de treinamento de uma rede neural MultiLayer Perceptron (MLP) com o intuito de contornar as limitações referentes às bases de dados pequenas e/ou desbalanceadas, possibilitando a rede neural obter um alto poder de generalização A metodologia proposta pode ser dividida em duas etapas principais. Na primeira, um estudo acerca da correlação entre as variáveis é realizado. Este estudo envolve avaliar a correlação entre as variáveis por meio do coeficiente de correlação de Pearson e a descorrelação das variáveis através do método Análise de Componentes Principais (ACP). Na segunda, ruídos derivados a partir de uma distribuição Gaussiana são inseridos nas variáveis de entrada. Para validar a abordagem proposta foram utilizadas três bases públicas de um conhecido benchmark da comunidade de redes neurais, Proben1. Os resultados experimentais indicam que a abordagem proposta obtém um desempenho estatisticamente melhor (95% de confiança) que o método de treinamento convencional, principalmente quando utilizado o método PCA para descorrelação das variáveis antes da aplicação de ruído
|
Page generated in 0.3303 seconds