• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Modeling of Self-heating in MOSFET and FinFET Basic Logic Gates Using Effective Thermal Conductivity

Pak Seresht, Elham 26 November 2012 (has links)
Recent trend of minimization in microprocessors has introduced increasing self-heating effects in FinFET and MOSFET transistors. To study these self-heating effects, we developed self-consistent 3D models of FinFET and MOSFET basic logic gates, and simulated steady-state thermal transport for the worst heating case scenario. Incorporating size-dependent effective thermal conductivity of thin films instead of bulk values, these simulations provide a more accurate prediction of temperature rise in the logic gates. Results of our simulations predict higher temperature rise in FinFETs, compared to MOSFETs. Existence of buried oxide layer and confined geometry of FinFET structure are determined to be the most contributing to this higher temperature rise. To connect the results of our simulations to higher scale simulations, we proposed an equivalent thermal conductivity for each basic logic gate. These values were tested and found to be independent of the magnitude of chosen boundary conditions, as well as heat generation rate.
2

Numerical Modeling of Self-heating in MOSFET and FinFET Basic Logic Gates Using Effective Thermal Conductivity

Pak Seresht, Elham 26 November 2012 (has links)
Recent trend of minimization in microprocessors has introduced increasing self-heating effects in FinFET and MOSFET transistors. To study these self-heating effects, we developed self-consistent 3D models of FinFET and MOSFET basic logic gates, and simulated steady-state thermal transport for the worst heating case scenario. Incorporating size-dependent effective thermal conductivity of thin films instead of bulk values, these simulations provide a more accurate prediction of temperature rise in the logic gates. Results of our simulations predict higher temperature rise in FinFETs, compared to MOSFETs. Existence of buried oxide layer and confined geometry of FinFET structure are determined to be the most contributing to this higher temperature rise. To connect the results of our simulations to higher scale simulations, we proposed an equivalent thermal conductivity for each basic logic gate. These values were tested and found to be independent of the magnitude of chosen boundary conditions, as well as heat generation rate.

Page generated in 0.0591 seconds