• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 375
  • 124
  • 60
  • 50
  • 46
  • 35
  • 19
  • 15
  • 13
  • 12
  • 11
  • 11
  • 6
  • 5
  • 4
  • Tagged with
  • 884
  • 187
  • 131
  • 130
  • 123
  • 86
  • 78
  • 64
  • 62
  • 57
  • 54
  • 53
  • 50
  • 49
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Variétés de représentations de carquois à boucles / Varieties of representations of quivers with loops

Bozec, Tristan 06 June 2014 (has links)
Cette thèse s’articule autour des espaces de modules de représentations de carquois arbitraires, c’est-à-dire possédant d’éventuelles boucles. Nous obtenons trois types de résultats. Le premier concerne la base canonique de Lusztig, dont la définition est étendue à notre cadre, notamment en introduisant une algèbre de Hopf généralisant les groupes quantiques usuels (i.e. associés aux algèbres de Kac-Moody symétriques). On démontre au passage une conjecture faite par Lusztig en 1993, portant sur la catégorie de faisceaux pervers qu’il définit sur les variétés de représentations de carquois.Le second type de résultats, également inspiré par le travail de Lusztig, concerne la base semi- canonique et la variété Lagrangienne nilpotent de Lusztig. Pour un carquois arbitraire, on définit des sous-variétés de représentations semi-nilpotentes Λ(α), et nous montrons qu’elles sont Lagrangiennes. La démonstration repose sur l’existence de fibrations affines partielles entre diverses composantes de Λ(α), contrôlées par une combinatoire précise. Nous définissons une algèbre de convolution de fonctions constructibles sur ⊔Λ(α), et montrons qu’elle possède une base formée de fonctions quasi- caractéristiques des composantes irréductibles des Λ(α). La structure combinatoire qui se dégage ici est analogue à celle obtenue sur les faisceaux pervers de Lusztig, et fait apparaître des opérateurs plus généraux que ceux décrits par les cristaux de Kashiwara.Le troisième thème considéré est celui des variétés carquois de Nakajima, dont l’étude géomé- trique menée ici permet, conjointement avec ce qui est fait précédemment, de donner une définition de cristaux de Kashiwara généralisés. On définit à nouveau des sous-variétés Lagrangiennes, ainsi qu’un produit tensoriel sur leurs composantes irréductibles, comme fait dans le cas classique par Nakajima. / This thesis is about the moduli spaces of representations of arbitrary quivers, i.e. possibly carrying loops. We obtain three types of results. The first one deals with the Lusztig canonical basis, whose definition is here extended to our framework, thanks in particular to the definition of a Hopf algebra generalizing the usual quantum groups (i.e. associated to symmetric Kac-Moody algebras). We also prove a conjecture raised by Lusztig in 1993, which concerns the category of perverse sheaves he defines on varieties of representations of quivers.The second type of results, also inspired by the work of Lusztig, concerns the semicanonical basis. For an arbitrary quiver, we define subvarieties of seminilpotent representations Λ(α), and we show that they are Lagrangian. The proof relies on the existence of partial affine fibrations between some irreducible components of Λ(α), controled by a precise combinatorial structure. We define a convolution algebra of constructible functions on ⊔Λ(α), and show it is equipped with a basis of quasi-characteristic functions of the irreducible components of the Λ(α). The combinatorial structure arising from this construction is analogous to the one obtained on Lusztig perverse sheaves, and yields operators more general than the ones described by Kashiwara crystals.The third considered topic is the one of Nakajima quiver varieties, whose geometric study in this thesis allows, along with the previous (also geometric) work, to define generalized Kashiwara crystals. We define, again, Lagrangian subvarieties, and a tensor product of their irreducible components, as done by Nakajima on the classical case.
152

The information content of accruals in the emerging capital market of China.

January 2000 (has links)
Song Yingkun. / Thesis submitted in: December 1999. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 31-34). / Abstracts in English and Chinese.
153

HILBERT BASES, DESCENT STATISTICS, AND COMBINATORIAL SEMIGROUP ALGEBRAS

Olsen, McCabe J. 01 January 2018 (has links)
The broad topic of this dissertation is the study of algebraic structure arising from polyhedral geometric objects. There are three distinct topics covered over three main chapters. However, each of these topics are further linked by a connection to the Eulerian polynomials. Chapter 2 studies Euler-Mahonian identities arising from both the symmetric group and generalized permutation groups. Specifically, we study the algebraic structure of unit cube semigroup algebra using Gröbner basis methods to acquire these identities. Moreover, this serves as a bridge between previous methods involving polyhedral geometry and triangulations with descent bases methods arising in representation theory. In Chapter 3, the aim is to characterize Hilbert basis elements of certain 𝒔-lecture hall cones. In particular, the main focus is the classification of the Hilbert bases for the 1 mod 𝑘 cones and the 𝓁-sequence cones, both of which generalize a previous known result. Additionally, there is much broader characterization of Hilbert bases in dimension ≤ 4 for 𝒖-generated Gorenstein lecture hall cones. Finally, Chapter 4 focuses on certain algebraic and geometric properties of 𝒔-lecture hall polytopes. This consists of partial classification results for the Gorenstein property, the integer-decomposition property, and the existence of regular, unimodular triangulations.
154

A note on quasi-robust cycle bases

Ostermeier, Philipp-Jens, Hellmuth, Marc, Klemm, Konstantin, Leydold, Josef, Stadler, Peter F. January 2009 (has links) (PDF)
We investigate here some aspects of cycle bases of undirected graphs that allow the iterative construction of all elementary cycles. We introduce the concept of quasi-robust bases as a generalization of the notion of robust bases and demonstrate that a certain class of bases of the complete bipartite graphs K m,n with m,n _> 5 is quasi-robust but not robust. We furthermore disprove a conjecture for cycle bases of Cartesian product graphs.
155

The One Electron Basis Set: Challenges in Wavefunction and Electron Density Calculations

Mahler, Andrew 05 1900 (has links)
In the exploration of chemical systems through quantum mechanics, accurate treatment of the electron wavefunction, and the related electron density, is fundamental to extracting information concerning properties of a system. This work examines challenges in achieving accurate chemical information through manipulation of the one-electron basis set.
156

A Radial Basis Function Approach to a Color Image Classification Problem in a Real Time Industrial Application

Sahin, Ferat 27 June 1997 (has links)
In this thesis, we introduce a radial basis function network approach to solve a color image classification problem in a real time industrial application. Radial basis function networks are employed to classify the images of finished wooden parts in terms of their color and species. Other classification methods are also examined in this work. The minimum distance classifiers are presented since they have been employed by the previous research. We give brief definitions about color space, color texture, color quantization, color classification methods. We also give an intensive review of radial basis functions, regularization theory, regularized radial basis function networks, and generalized radial basis function networks. The centers of the radial basis functions are calculated by the k-means clustering algorithm. We examine the k-means algorithm in terms of starting criteria, the movement rule, and the updating rule. The dilations of the radial basis functions are calculated using a statistical method. Learning classifier systems are also employed to solve the same classification problem. Learning classifier systems learn the training samples completely whereas they are not successful to classify the test samples. Finally, we present some simulation results for both radial basis function network method and learning classifier systems method. A comparison is given between the results of each method. The results show that the best classification method examined in this work is the radial basis function network method. / Master of Science
157

Hjälp alla så långt du förmår! : En undersökning av Arthur Schopenhauers etik

Ahlkvist, Felix January 2017 (has links)
The subject of this thesis is the ethics of German 19th century philosopher Arthur Schopenhauer. The study examines Schopenhauer’s ethics and investigates his criticism of the ethics of his older German colleague Immanuel Kant. By arguing that all true morally acceptable and good actions originate from compassion, Schopenhauer distinguishes his view from the deontological ethics held by Kant. The study focuses on Schopenhauer’s view on the basis of morals. Its purpose is to consider an ethical perspective that interconnect moral considerations with human empathy. By comparing the arguments presented by these two philosophers one can get a clearer view of the extent to which Schopenhauer’s criticism of Kant’s ethics is justified. In the analysis, five major parts of Schopenhauer’s criticism are identified and studied one by one. The findings suggest that Schopenhauer’s ethics and the ethics of Kant can be represented as two different ethical paradigms.
158

Fast Order Basis and Kernel Basis Computation and Related Problems

Zhou, Wei 28 November 2012 (has links)
In this thesis, we present efficient deterministic algorithms for polynomial matrix computation problems, including the computation of order basis, minimal kernel basis, matrix inverse, column basis, unimodular completion, determinant, Hermite normal form, rank and rank profile for matrices of univariate polynomials over a field. The algorithm for kernel basis computation also immediately provides an efficient deterministic algorithm for solving linear systems. The algorithm for column basis also gives efficient deterministic algorithms for computing matrix GCDs, column reduced forms, and Popov normal forms for matrices of any dimension and any rank. We reduce all these problems to polynomial matrix multiplications. The computational costs of our algorithms are then similar to the costs of multiplying matrices, whose dimensions match the input matrix dimensions in the original problems, and whose degrees equal the average column degrees of the original input matrices in most cases. The use of the average column degrees instead of the commonly used matrix degrees, or equivalently the maximum column degrees, makes our computational costs more precise and tighter. In addition, the shifted minimal bases computed by our algorithms are more general than the standard minimal bases.
159

Stable Bases for Kernel Based Methods

Pazouki, Maryam 13 June 2012 (has links)
No description available.
160

Fast Order Basis and Kernel Basis Computation and Related Problems

Zhou, Wei 28 November 2012 (has links)
In this thesis, we present efficient deterministic algorithms for polynomial matrix computation problems, including the computation of order basis, minimal kernel basis, matrix inverse, column basis, unimodular completion, determinant, Hermite normal form, rank and rank profile for matrices of univariate polynomials over a field. The algorithm for kernel basis computation also immediately provides an efficient deterministic algorithm for solving linear systems. The algorithm for column basis also gives efficient deterministic algorithms for computing matrix GCDs, column reduced forms, and Popov normal forms for matrices of any dimension and any rank. We reduce all these problems to polynomial matrix multiplications. The computational costs of our algorithms are then similar to the costs of multiplying matrices, whose dimensions match the input matrix dimensions in the original problems, and whose degrees equal the average column degrees of the original input matrices in most cases. The use of the average column degrees instead of the commonly used matrix degrees, or equivalently the maximum column degrees, makes our computational costs more precise and tighter. In addition, the shifted minimal bases computed by our algorithms are more general than the standard minimal bases.

Page generated in 0.042 seconds