Spelling suggestions: "subject:"match processes"" "subject:"batch processes""
11 |
Data-Driven Modeling and Control of Batch and Batch-Like ProcessesGarg, Abhinav January 2018 (has links)
This thesis focuses on data-driven modeling and control of batch and batch-like processes. These processes are highly nonlinear and time-varying which, unlike continuous operations, are characterized by the finite duration of operation and absence of equilibrium conditions. This makes the modeling and control approaches available for continuous processes not readily applicable and requires appropriate adaptations of the available approaches to handle a) batch data structure for modeling and b) a control objective different than that of maintaining a steady-state operation as often encountered in a continuous process.
With these considerations, this work adapted the batch subspace identification for modeling and control of a variety of batch and batch-like processes. A particular focus of this work was on the application of the proposed ideas on real engineering systems along with simulated case studies. The applications considered in this work are batch crystallization, a hydrogen plant startup dynamics in a collaboration with Praxair Inc. and a rotational molding process in collaboration with the polymer research group at McMaster University. For the seeded batch crystallization process, subspace identification techniques are adapted to identify a linear time invariant model for the, otherwise, infinite dimensional process. The identified model is then deployed in a linear model predictive control (MPC) strategy to achieve crystal size distribution (CSD) with desired characteristics subject to both manipulated input and product quality constraints. The proposed MPC is shown to achieve superior performance and the ability to respect tighter product quality constraints as well as robustness to uncertainty in comparison to an open loop policy as well as a traditional trajectory tracking policy using classical control. In another contribution, merits of handling data variety in a subspace identification framework was demonstrated on the crystallization process. The proposed approach facilitates the specification of a desired shape of the particle size distribution required at the termination of the batch process. Further, novel model validity constraints are proposed for the subspace identification based control framework. In the collaborative work on hydrogen plant startup, it is recognized as a batch-like process due to its similarity to batch processes. Firstly, in this work a high fidelity model of the Hydrogen unit was developed with relevant startup and shutdown mechanisms. This setup is used to mimic the trends in the key process variables during the startup/shutdown operation. The simulated data is used to identify a state-space model of the process and validated on new simulated startup. Further, the approach was demonstrated on real plant data from one of the Praxair's plants. The predictive capabilities of the model provide ample handle for the plant operator for averting failures and abrupt shutdown of the entire plant. This is expected to have immense economic advantages. Finally, the subspace identification based modeling and control approach was applied to a lab-scale rotational modeling (RM) process. It is a polymer processing technique that is characterized by the placement of a polymer resin inside a mold, subsequent closure of the mold, followed by the simultaneous application of uni-axial (as is the case in the present work) or bi-axial rotation and heat. The resin is deposited on the mold wall where it forms a dense unified layer following which, the mold is cooled while still rotating the mold. Once demolding temperatures are achieved, the finished part is removed from the mold. Its potential as a manufacturing process for polymeric components is limited by a number of concerns including difficulties in process control, in particular, determining efficiently the process operation to yield the desired product consistently, and produce new products. This work has contributed by developing optimal control strategies for the process to achieve user-specified product quality and reject variability across batches. The results obtained demonstrate the merits of the proposed approach. / Thesis / Doctor of Philosophy (PhD)
|
12 |
ADVANCES ON BILINEAR MODELING OF BIOCHEMICAL BATCH PROCESSESGonzález Martínez, José María 07 October 2015 (has links)
[EN] This thesis is aimed to study the implications of the statistical modeling approaches proposed for the bilinear modeling of batch processes, develop new techniques to overcome some of the problems that have not been yet solved and apply them to data of biochemical processes. The study, discussion and development of the new methods revolve around the four steps of the modeling cycle, from the alignment, preprocessing and calibration of batch data to the monitoring of batches trajectories. Special attention is given to the problem of the batch synchronization, and its effect on the modeling from different angles.
The manuscript has been divided into four blocks. First, a state-of- the-art of the latent structures based-models in continuous and batch processes and traditional univariate and multivariate statistical process control systems is carried out.
The second block of the thesis is devoted to the preprocessing of batch data, in particular, to the equalization and synchronization of batch trajectories. The first section addresses the problem of the lack of equalization in the variable trajectories. The different types of unequalization scenarios that practitioners might finnd in batch processes are discussed and the solutions to equalize batch data are introduced. In the second section, a theoretical study of the nature of batch processes and of the synchronization of batch trajectories as a prior step to bilinear modeling is carried out. The topics under discussion are i) whether the same synchronization approach must be applied to batch data in presence of different types of asynchronisms, and ii) whether synchronization is always required even though the length of the variable trajectories are constant across batches. To answer these questions, a thorough study of the most common types of asynchronisms that may be found in batch data is done. Furthermore, two new synchronization techniques are proposed to solve the current problems in post-batch and real-time synchronization. To improve fault detection and classification, new unsupervised control charts and supervised fault classifiers based on the information generated by the batch synchronization are also proposed.
In the third block of the manuscript, a research work is performed on the parameter stability associated with the most used synchronization methods and principal component analysis (PCA)-based Batch Multivariate Statistical Process Control methods. The results of this study have revealed that accuracy in batch synchronization has a profound impact on the PCA model parameters stability. Also, the parameter stability is closely related to the type of preprocessing performed in batch data, and the type of model and unfolding used to transform the three-way data structure to two-way. The setting of the parameter stability, the source of variability remaining after preprocessing and the process dynamics should be balanced in such a way that multivariate statistical models are accurate in fault detection and diagnosis and/or in online prediction.
Finally, the fourth block introduces a graphical user-friendly interface developed in Matlab code for batch process understanding and monitoring. To perform multivariate analysis, the last developments in process chemometrics, including the methods proposed in this thesis, are implemented. / [ES] La presente tesis doctoral tiene como objetivo estudiar las implicaciones de los métodos estadísticos propuestos para la modelización bilineal de procesos por lotes, el desarrollo de nuevas técnicas para solucionar algunos de los problemas más complejos aún por resolver en esta línea de investigación y aplicar los nuevos métodos a datos provenientes de procesos bioquímicos para su evaluación estadística. El estudio, la discusión y el desarrollo de los nuevos métodos giran en torno a las cuatro fases del ciclo de modelización: desde la sincronización, ecualización, preprocesamiento y calibración de los datos, a la monitorización de las trayectorias de las variables del proceso. Se presta especial atención al problema de la sincronización y su efecto en la modelización estadística desde distintas perspectivas.
El manuscrito se ha dividido en cuatro grandes bloques. En primer lugar, se realiza una revisión bibliográfica de las técnicas de proyección sobre estructuras latentes para su aplicación en procesos continuos y por lotes, y del diseño de sistemas de control basados en modelos estadísticos multivariantes.
El segundo bloque del documento versa sobre el preprocesamiento de los datos, en concreto, sobre la ecualización y la sincronización. La primera parte aborda el problema de la falta de ecualización en las trayectorias de las variables. Se discuten las diferentes políticas de muestreo que se pueden encontrar en procesos por lotes y las soluciones para ecualizar las variables. En la segunda parte de esta sección, se realiza un estudio teórico sobre la naturaleza de los procesos por lotes y de la sincronización de las trayectorias como paso previo a la modelización bilineal. Los temas bajo discusión son: i) si se debe utilizar el mismo enfoque de sincronización en lotes afectados por diferentes tipos de asincronismos, y ii) si la sincronización es siempre necesaria aún y cuando las trayectorias de las variables tienen la misma duración en todos los lotes. Para responder a estas preguntas, se lleva a cabo un estudio exhaustivo de los tipos más comunes de asincronismos que se pueden encontrar en este tipo de datos. Además, se proponen dos nuevas técnicas de sincronización para resolver los problemas existentes en aplicaciones post-morten y en tiempo real. Para mejorar la detección de fallos y la clasificación, también se proponen nuevos gráficos de control no supervisados y clasificadores de fallos supervisados en base a la información generada por la sincronización de los lotes.
En el tercer bloque del manuscrito se realiza un estudio de la estabilidad de los parámetros asociados a los métodos de sincronización y a los métodos estadístico multivariante basados en el Análisis de Componentes Principales (PCA) más utilizados para el control de procesos. Los resultados de este estudio revelan que la precisión de la sincronización de las trayectorias tiene un impacto significativo en la estabilidad de los parámetros de los modelos PCA. Además, la estabilidad paramétrica está estrechamente relacionada con el tipo de preprocesamiento realizado en los datos de los lotes, el tipo de modelo a justado y el despliegue utilizado para transformar la estructura de datos de tres a dos dimensiones. El ajuste de la estabilidad de los parámetros, la fuente de variabilidad que queda después del preprocesamiento de los datos y la captura de las dinámicas del proceso deben ser a justados de forma equilibrada de tal manera que los modelos
estadísticos multivariantes sean precisos en la detección y diagnóstico de fallos y/o en la predicción en tiempo real.
Por último, el cuarto bloque del documento describe una interfaz gráfica de usuario que se ha desarrollado en código Matlab para la comprensión y la supervisión de procesos por lotes. Para llevar a cabo los análisis multivariantes, se han implementado los últimos desarrollos en la quimiometría de proc / [CA] Aquesta tesi doctoral te com a objectiu estudiar les implicacions dels mètodes de modelització estadística proposats per a la modelització bilineal de processos per lots, el desenvolupament de noves tècniques per resoldre els problemes encara no resolts en aquesta línia de recerca i aplicar els nous mètodes a les dades dels processos bioquímics. L'estudi, la discussió i el desenvolupament dels nous mètodes giren entorn a les quatre fases del cicle de modelització, des de l'alineació, preprocessament i el calibratge de les dades provinents de lots, a la monitorització de les trajectòries. Es presta especial atenció al problema de la sincronització per lots, i el seu efecte sobre el modelatge des de diferents angles.
El manuscrit s'ha dividit en quatre grans blocs. En primer lloc, es realitza una revisió bibliogràfica dels principals mètodes basats en tècniques de projecció sobre estructures latents en processos continus i per lots, així com dels sistemes de control estadístics multivariats.
El segon bloc del document es dedica a la preprocessament de les dades provinents de lots, en particular, l' equalització i la sincronització. La primera part aborda el problema de la manca d'equalització en les trajectòries de les variables. Es discuteixen els diferents tipus d'escenaris en que les variables estan mesurades a distints intervals i les solucions per equalitzar-les en processos per lots. A la segona part d'aquesta secció es porta a terme un estudi teòric de la naturalesa dels processos per lots i de la sincronització de les trajectòries de lots com a pas previ al modelatge bilineal. Els temes en discussió són: i) si el mateix enfocament de sincronització ha de ser aplicat a les dades del lot en presència de diferents tipus de asincronismes, i ii) si la sincronització sempre es requereix tot i que la longitud de les trajectòries de les variables són constants en tots el lots. Per respondre a aquestes preguntes, es du a terme un estudi exhaustiu dels tipus més comuns de asincronismes que es poden trobar en les dades provinents de lots. A més, es proposen dues noves tècniques de sincronització per resoldre els problemes existents la sincronització post-morten i en temps real. Per millorar la detecció i la classificació de anomalies, també es proposen nous gràfics de control no supervisats i classificadors de falla supervisats dissenyats en base a la informació generada per la sincronització de lots.
En el tercer bloc del manuscrit es realitza un treball de recerca sobre l'estabilitat dels paràmetres associats als mètodes de sincronització i als mètodes estadístics multivariats basats en l'Anàlisi de Components Principals (PCA) més utilitzats per al control de processos. Els resultats d'aquest estudi revelen que la precisió en la sincronització per lots te un profund impacte en l'estabilitat dels paràmetres dels models PCA. A més, l'estabilitat paramètrica està estretament relacionat amb el tipus de preprocessament realitzat en les dades provinents de lots, el tipus de model i el desplegament utilitzat per transformar l'estructura de dades de tres a dos dimensions. L'ajust de l'estabilitat dels paràmetres, la font de variabilitat que queda després del preprocessament i la captura de la dinàmica de procés ha de ser equilibrada de tal manera que els models estadístics multivariats són precisos en la detecció i diagnòstic de fallades i/o en la predicció en línia.
Finalment, el quart bloc del document introdueix una interfície gràfica d'usuari que s'ha dissenyat e implementat en Matlab per a la comprensió i la supervisió de processos per lots. Per dur a terme aquestes anàlisis multivariats, s'han implementat els últims desenvolupaments en la quimiometria de processos, incloent-hi els mètodes proposats en aquesta tesi. / González Martínez, JM. (2015). ADVANCES ON BILINEAR MODELING OF BIOCHEMICAL BATCH PROCESSES [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/55684 / Premios Extraordinarios de tesis doctorales
|
13 |
Seleção de variáveis aplicada ao controle estatístico multivariado de processos em bateladasPeres, Fernanda Araujo Pimentel January 2018 (has links)
A presente tese apresenta proposições para o uso da seleção de variáveis no aprimoramento do controle estatístico de processos multivariados (MSPC) em bateladas, a fim de contribuir com a melhoria da qualidade de processos industriais. Dessa forma, os objetivos desta tese são: (i) identificar as limitações encontradas pelos métodos MSPC no monitoramento de processos industriais; (ii) entender como métodos de seleção de variáveis são integrados para promover a melhoria do monitoramento de processos de elevada dimensionalidade; (iii) discutir sobre métodos para alinhamento e sincronização de bateladas aplicados a processos com diferentes durações; (iv) definir o método de alinhamento e sincronização mais adequado para o tratamento de dados de bateladas, visando aprimorar a construção do modelo de monitoramento na Fase I do controle estatístico de processo; (v) propor a seleção de variáveis, com propósito de classificação, prévia à construção das cartas de controle multivariadas (CCM) baseadas na análise de componentes principais (PCA) para monitorar um processo em bateladas; e (vi) validar o desempenho de detecção de falhas da carta de controle multivariada proposta em comparação às cartas tradicionais e baseadas em PCA. O desempenho do método proposto foi avaliado mediante aplicação em um estudo de caso com dados reais de um processo industrial alimentício. Os resultados obtidos demonstraram que a realização de uma seleção de variáveis prévia à construção das CCM contribuiu para reduzir eficientemente o número de variáveis a serem analisadas e superar as limitações encontradas na detecção de falhas quando bancos de elevada dimensionalidade são monitorados. Conclui-se que, ao possibilitar que CCM, amplamente utilizadas no meio industrial, sejam adequadas para banco de dados reais de elevada dimensionalidade, o método proposto agrega inovação à área de monitoramento de processos em bateladas e contribui para a geração de produtos de elevado padrão de qualidade. / This dissertation presents propositions for the use of variable selection in the improvement of multivariate statistical process control (MSPC) of batch processes, in order to contribute to the enhacement of industrial processes’ quality. There are six objectives: (i) identify MSPC limitations in industrial processes monitoring; (ii) understand how methods of variable selection are used to improve high dimensional processes monitoring; (iii) discuss about methods for alignment and synchronization of batches with different durations; (iv) define the most adequate alignment and synchronization method for batch data treatment, aiming to improve Phase I of process monitoring; (v) propose variable selection for classification prior to establishing multivariate control charts (MCC) based on principal component analysis (PCA) to monitor a batch process; and (vi) validate fault detection performance of the proposed MCC in comparison with traditional PCA-based and charts. The performance of the proposed method was evaluated in a case study using real data from an industrial food process. Results showed that performing variable selection prior to establishing MCC contributed to efficiently reduce the number of variables and overcome limitations found in fault detection when high dimensional datasets are monitored. We conclude that by improving control charts widely used in industry to accomodate high dimensional datasets the proposed method adds innovation to the area of batch process monitoring and contributes to the generation of high quality standard products.
|
14 |
Use of multivariate statistical methods for control of chemical batch processesLopez Montero, Eduardo January 2016 (has links)
In order to meet tight product quality specifications for chemical batch processes, it is vital to monitor and control product quality throughout the batch duration. However, the frequent lack of in situ sensors for continuous monitoring of batch product quality complicates the control problem and calls for novel control approaches. This thesis focuses on the study and application of multivariate statistical methods to control product quality in chemical batch processes. These multivariate statistical methods can be used to identify data-driven prediction models that can be integrated within a model predictive control (MPC) framework. The ideal MPC control strategy achieves end-product quality specifications by performing trajectory tracking during the batch operating time. However, due to the lack of in-situ sensors, measurements of product quality are usually obtained by laboratory assays and are, therefore, inherently intermittent. This thesis proposes a new approach to realise trajectory tracking control of batch product quality in those situations where only intermittent measurements are available. The scope of this methodology consists of: 1) the identification of a partial least squares (PLS) model that works as an estimator of product quality, 2) the transformation of the PLS model into a recursive formulation utilising a moving window technique, and 3) the incorporation of the recursive PLS model as a predictor into a standard MPC framework for tracking the desired trajectory of batch product quality. The structure of the recursive PLS model allows a straightforward incorporation of process constraints in the optimisation process. Additionally, a method to incorporate a nonlinear inner relation within the proposed PLS recursive model is introduced. This nonlinear inner relation is a combination of feedforward artificial neural networks (ANNs) and linear regression. Nonlinear models based on this method can predict product quality of highly nonlinear batch processes and can, therefore, be used within an MPC framework to control such processes. The use of linear regression in addition to ANNs within the PLS model reduces the risk of overfitting and also reduces the computational e↵ort of the optimisation carried out by the controller. The benefits of the proposed modelling and control methods are demonstrated using a number of simulated batch processes.
|
15 |
A robust sustainable optimization & control strategy (RSOCS) for (fed-)batch processes towards the low-cost reduction of utilities consumptionRossi, F., Manenti, F., Pirola, C., Mujtaba, Iqbal 22 June 2015 (has links)
Yes / The need for the development of clean but still profitable processes and the study of low environmental impact and economically convenient management policies for them are two challenges for the years to come. This paper tries to give a first answer to the second of these needs, limited to the area of discontinuous productions. It deals with the development of a robust methodology for the profitable and clean management of (fed-)batch units under uncertainty, which can be referred to as a robust sustainability-oriented model-based optimization & control strategy. This procedure is specifically designed to ensure elevated process performances along with low-cost utilities usage reduction in real-time, simultaneously allowing for the effect of any external perturbation. In this way, conventional offline methods for process sustainable optimization can be easily overcome since the most suitable management policy, aimed at process sustainability, can be dynamically determined and applied in any operating condition. This leads to a significant step forward with respect to the nowadays options in terms of sustainable process management, that drives towards a cleaner and more energy-efficient future. The proposed theoretical framework is validated and tested on a case study based on the well-known fed-batch version of the Williams-Otto process to demonstrate its tangible benefits. The results achieved in this case study are promising and show that the framework is very effective in case of typical process operation while it is partially effective in case of unusual/unlikely critical process disturbances. Future works will go towards the removal of this weakness and further improvement in the algorithm robustness.
|
Page generated in 0.0816 seconds