• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physiologically relevant screening of polyphenol-rich commercial preparations for bioactivity in vascular endothelial cells and application to healthy volunteers: A viable workflow and a cautionary tale

Jones, Huw, Papageorgiou, M., Gordon, A., Ehtesham, Wells, L.K., Javed, Z., Greetham, S., Doyle, B., Hayes, N., Rigby, A., Atkin, S.L., Courts, F.L., Sathyapalan, T. 29 April 2020 (has links)
Yes / This study describes the screening of 13 commercially-available plant extracts for pharmacological activity modulating vascular function using an endothelial cell model. A French maritime pine bark extract (FMPBE) was found to have the greatest effect upon nitric oxide availability in control (181% ± 36% of untreated cells) and dysfunctional cells (132% ± 8% of untreated control cells). In healthy volunteers, the FMPBE increased plasma nitrite concentrations 8 h post-consumption compared to baseline (baseline corrected median 1.71 ± 0.38 (25% IQR) and 4.76 (75% IQR) µM, p < 0.05). This was followed by a placebo-controlled, healthy volunteer study, which showed no effects on plasma nitrite. It was confirmed that different batches of extract had been used in the healthy volunteer studies, and this second batch lacked bioactivity, assessed using the in vitro model. No difference in plasma catechin levels was seen at 8 h following supplementation between the studies (252 ± 194 nM versus 50 ± 64 nM, p > 0.05), however HPLC-UV fingerprinting showed that the new batch had a 5-15% in major constituents (including procyanidins A2, B1 and B2) compared to the original batch. This research describes a robust mechanism for screening bioactive extracts for vascular effects. It also highlights batch variability as a significant limitation when using complex extracts for pharmacological activity, and suggests the use of in vitro systems as a tool to identify this problem in future studies.

Page generated in 0.157 seconds