• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Powertrain technology and cost assessment of battery electric vehicles

Qin, Helen 01 April 2010 (has links)
This thesis takes EV from the late 90’s as a baseline, assess the capability of today’s EV technology, and establishes its near-term and long-term prospects. Simulations are performed to evaluate EVs with different combinations of new electric machines and battery chemistries. Cost assessment is also presented to address the major challenge of EV commercialization. This assessment is based on two popular vehicle classes: subcompact and mid-size. Fuel, electricity and battery costs are taken into consideration for this study. Despite remaining challenges and concerns, this study shows that with production level increases and battery price-drops, full function EVs could dominate the market in the longer term. The modeling shows that from a technical and performance standpoint both range and recharge times already fall into a window of practicality, with few if any compromises relative to conventional vehicles. Electric vehicles are the most sustainable alternative personal transportation technology available to-date. With continuing breakthroughs, minimal change to the power grid, and optimal GHG reductions, emerging electric vehicle performance is unexpectedly high.
2

Conducting redox polymers for battery applications

Svensson, Mikael January 2020 (has links)
The near future will put a lot of demand on the increasing need for energy production and storage. Issues regarding the modern-day battery technology’s environmental benignity, safety and cost to sustain such demands thus serve as a huge bottleneck, necessitating the research into alternative electrochemical energy storage solutions. Conducting redox polymers are a class of materials which combines the concepts of conducting polymers and redox active molecules to work as fully organic electrode materials. In this work three conducting redox polymers based on 3,4-ethylenedioxythiopene and 3,4-propylenedioxythiopene (EPE) with hydroquinone, catechol and quinizarin pendant groups were investigated. The polymers were electrochemically characterized with regards to their ability to cycle protons (aqueous electrolyte) and cations (non-aqueous electrolyte), their kinetics and charge transport and as cathodes in a battery. In non-aqueous electrolyte, hydroquinone and catechol did not exhibit redox activity in a potential region where the backbone was conducting as they were not redoxmatched. Quinizarin showed redox-matching as concluded by in situ conductance and UV-vis measurements when cycling Na+, Li+, Ca2+ and Mg2+-ions in acetonitrile. Comparison of the kinetics revealed that the rate constant for Ca2+-ion cycling was several magnitudes larger than the rest, and galvanostatic charge/discharge showed that 90% of the polymer capacity was attainable at 5C. An EPE-Quinizarin cathode and metallic calcium anode coin cell assembly displayed output voltages of 2.4 V, and the presented material thus shows promising and exciting properties for future sustainable battery chemistries.

Page generated in 0.0954 seconds