• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Matematický popis VRB baterie / Mathematical description of VRB battery

Korniak, Daniel January 2013 (has links)
This work is in the introduction focused on the introduction of technologies for electrical energy storage, their description and capturing the main advantages and disadvantages. After this capture follows comparison of the various technologies in terms of efficiency , discharge time and the price for1 kWh . Following section focuses on electrochemical model VRB batteries , which describes the equations describing the behavior of a battery depending on the chemical an electrical properties . In the penultimate chapter, I introduced the language of object- oriented modeling language Modelica and the most common programs based on it, including a short introduction for modeling in MathModelica. The last part deals with the modeling of specific VRB battery, which we have at the faculty.
12

Machine learning based user activity prediction for smart homes

Goutham, Mithun January 2020 (has links)
No description available.
13

Physics-Based Modeling of Degradation in Lithium Ion Batteries

Surya Mitra Ayalasomayajula (5930522) 03 October 2023 (has links)
<h4>A generalized physics-based modeling framework is presented to analyze: (a) the effects of temperature on identified degradation mechanisms, (b) interfacial debonding processes, including deterministic and stochastic mechanisms, and (c) establishing model performance benchmarks of electrochemical porous electrode theory models, as a necessary stepping stone to perform valid battery degradation analyses and designs. Specifically, the effects of temperature were incorporated into a physics-based, reduced-order model and extended for a LiCoO<sub>2</sub> -graphite 18650 cell. Three dimensionless driving forces were identified, controlling the temperature-dependent reversible charge capacity. The identified temperature-dependent irreversible mechanisms include homogeneous SEI, at moderate to high temperatures, and the chemomechanical degradation of the cathode at low temperatures. Also, debonding of a statistically representative electrochemically active particle from the surrounding binder-electrolyte matrix in a porous electrode was modeled analytically, for the first time. The proposed framework enables to determine the space of C-Rates and electrode particle radii that suppresses or enhances debonding and is graphically summarized into performance–microstructure maps where four debonding mechanisms were identified, and condensed into power-law relations with respect to the particle radius. Finally, in order to incorporate existing or emerging degradation models into porous electrode theory (PET) implementations, a set of benchmarks were proposed to establish a common basis to assess their physical reaches, limitations, and accuracy. Three open source models: dualfoil, MPET, and LIONSIMBA were compared, exhibiting significant qualitative differences, despite showing the same macroscopic voltage response, leading the user to different conclusions regarding the battery performance and possible degradation mechanisms of the analyzed system.</h4>
14

Energy Savings Using a Direct Current Distribution Network in a PV and Battery Equipped Residential Building

Ollas, Patrik January 2020 (has links)
Energy from solar photovoltaic (PV) are generated as direct current (DC) and almost all of today’s electrical loads in residential buildings, household appliances and HVAC system (Heating Ventilation and Air-conditioning) are operated on DC. For a conventional alternating current (AC) distribution system this requires the need for multiple conversion steps before the final user-stage. By switching the distribution system to DC, conversion steps between AC to DC can be avoided and, in that way, losses are reduced. Including a battery storage–the system’s losses can be reduced further and the generated PV energy is even better utilised. This thesis investigates and quantifies the energy savings when using a direct current distribution topology in a residential building together with distributed energy generation from solar photovoltaic and a battery storage. Measured load and PV generation data for a single-family house situated in Borås, Sweden is used as a case study for the analysis. Detailed and dynamic models–based on laboratory measurements of the power electronic converters and the battery–are also used to more accurately reflect the system’s dynamic performance. In this study a dynamic representation of the battery’s losses is presented which is based on laboratory measurements of the resistance and current dependency for a single lithium-ion cell based on Lithium iron phosphate (LFP). A comparative study is made with two others, commonly used, loss representations and evaluated with regards to the complete system’s performance, using the PV and load data from the single-family house. Results show that a detailed battery representation is important for a correct loss prediction when modelling the interaction between loads, PV and the battery. Four DC system topologies are also modelled and compared to an equivalent AC topology using the experimental findings from the power electronic converters and the battery measurements. Results from the quasi-dynamic modelling show that the annual energy savings potential from the suggested DC topologies ranges between 1.9–5.6%. The DC topologies also increase the PV utilisation by up to 10 percentage points, by reducing the associated losses from the inverter and the battery conversion. Results also show that the grid-tied converter is the main loss contributor and when a constant grid-tied efficiency is used, the energy savings are overestimated.

Page generated in 0.1197 seconds