• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extending a battlefield simulator with large scale terrain rendering and flight simulator functionality

Johansson, Daniel January 2005 (has links)
<p>Simulation of modern battlefield scenarios on consumer PC:s deal with a number of limitations, many of them related to the limited performance of a normal PC compared to workstations and servers. Specifically, the visualization of realistic large scale outdoor environments is problematic because of the large amount of data required to describe its contents. This becomes especially problematic in simulations of fast moving vehicles such as aircrafts, where one needs to maintain high frame rates while having high visual detail for orientation and targeting. This thesis proposes a method of generating realistic outdoor environments from actual geological data and then rendering it efficiently using an improved level of detail algorithm within a proprietary battle simulation framework. We also show how to integrate an open source Flight Dynamics Model (FDM) into the simulation framework for future hybrid simulations involving aircrafts.</p>
2

Extending a battlefield simulator with large scale terrain rendering and flight simulator functionality

Johansson, Daniel January 2005 (has links)
Simulation of modern battlefield scenarios on consumer PC:s deal with a number of limitations, many of them related to the limited performance of a normal PC compared to workstations and servers. Specifically, the visualization of realistic large scale outdoor environments is problematic because of the large amount of data required to describe its contents. This becomes especially problematic in simulations of fast moving vehicles such as aircrafts, where one needs to maintain high frame rates while having high visual detail for orientation and targeting. This thesis proposes a method of generating realistic outdoor environments from actual geological data and then rendering it efficiently using an improved level of detail algorithm within a proprietary battle simulation framework. We also show how to integrate an open source Flight Dynamics Model (FDM) into the simulation framework for future hybrid simulations involving aircrafts.

Page generated in 0.1127 seconds