• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study of Bayesian Inference in Medical Diagnosis

Herzig, Michael 05 1900 (has links)
<p> Bayes' formula may be written as follows: </p> <p> P(yᵢ|X) = P(X|yᵢ)・P(yᵢ)/j=K Σ j=1 P(X|yⱼ)・P(yⱼ) where (1) </p> <p> Y = {y₁, y₂,..., y_K} </p> <P> X = {x₁, x₂,..., xₖ} </p> <p> Assuming independence of attributes x₁, x₂,..., xₖ, Bayes' formula may be rewritten as follows: </p> <p> P(yᵢ|X) = P(x₁|yᵢ)・P(x₂|yᵢ)・...・P(xₖ|yᵢ)・P(yᵢ)/j=K Σ j=1 P(x₁|yⱼ)・P(x₂|yⱼ)・...・P(xₖ|yⱼ)・P(yⱼ) (2) </p> <p> In medical diagnosis the y's denote disease states and the x's denote the presence or absence of symptoms. Bayesian inference is applied to medical diagnosis as follows: for an individual with data set X, the predicted diagnosis is the disease yⱼ such that P(yⱼ|X) = max_i P(yᵢ|X), i=1,2,...,K (3) </p> <p> as calculated from (2). </p> <p> Inferences based on (2) and (3) correctly allocate a high proportion of patients (>70%) in studies to date, despite violations of the independence assumption. The aim of this thesis is modest, (i) to demonstrate the applicability of Bayesian inference to the problem of medical diagnosis (ii) to review pertinent literature (iii) to present a Monte Carlo method which simulates the application of Bayes' formula to distinguish among diseases (iv) to present and discuss the results of Monte Carlo experiments which allow statistical statements to be made concerning the accuracy of Bayesian inference when the assumption of independence is violated. </p> <p> The Monte Carlo study considers paired dependence among attributes when Bayes' formula is used to predict diagnoses from among 6 disease categories. A parameter which measured deviations from attribute independence is defined by DH=(j=6 Σ j=1|P(x_B|x_A,yⱼ)-P(x_B|yⱼ)|)/6, where x_A and x_B denote a dependent attribute pair. It was found that the correct number of Bayesian predictions, M, decreases markedly as attributes increasing diverge from independence, ie, as DH increases. However, a simple first order linear model of the form M = B₀+B₁・DH does not consistently explain the variation in M. </p> / Thesis / Master of Science (MSc)

Page generated in 0.0755 seconds