Spelling suggestions: "subject:"bayesian sequential"" "subject:"eayesian sequential""
1 |
Model Discrimination Using Markov Chain Monte Carlo MethodsMasoumi, Samira 24 April 2013 (has links)
Model discrimination deals with situations where there are several candidate models available to represent a system. The objective is to find the “best” model among rival models with respect to prediction of system behavior. Empirical and mechanistic models are two important categories of models. Mechanistic models are developed based on physical mechanisms. These types of models can be applied for prediction purposes, but they are also developed to gain improved understanding of the underlying physical mechanism or to estimate physico-chemical parameters of interest. When model discrimination is applied to mechanistic models, the main goal is typically to determine the “correct” underlying physical mechanism. This study focuses on mechanistic models and presents a model discrimination procedure which is applicable to mechanistic models for the purpose of studying the underlying physical mechanism.
Obtaining the data needed from the real system is one of the challenges particularly in applications where experiments are expensive or time consuming. Therefore, it is beneficial to get the maximum information possible from the real system using the least possible number of experiments.
In this research a new approach to model discrimination is presented that takes advantage of Monte Carlo (MC) methods. It combines a design of experiments (DOE) method with an adaptation of MC model selection methods to obtain a sequential Bayesian Markov Chain Monte Carlo model discrimination framework which is general and usable for a wide range of model discrimination problems.
The procedure has been applied to chemical engineering case studies and the promising results have been discussed. Four case studies, order of reaction, rate of FeIII formation, copolymerization, and RAFT polymerization, are presented in this study.
The first three benchmark problems allowed us to refine the proposed approach. Moreover, applying the Sequential Bayesian Monte Carlo model discrimination framework in the RAFT problem made a contribution to the polymer community by recommending analysis an approach to selecting the correct mechanism.
|
2 |
Model Discrimination Using Markov Chain Monte Carlo MethodsMasoumi, Samira 24 April 2013 (has links)
Model discrimination deals with situations where there are several candidate models available to represent a system. The objective is to find the “best” model among rival models with respect to prediction of system behavior. Empirical and mechanistic models are two important categories of models. Mechanistic models are developed based on physical mechanisms. These types of models can be applied for prediction purposes, but they are also developed to gain improved understanding of the underlying physical mechanism or to estimate physico-chemical parameters of interest. When model discrimination is applied to mechanistic models, the main goal is typically to determine the “correct” underlying physical mechanism. This study focuses on mechanistic models and presents a model discrimination procedure which is applicable to mechanistic models for the purpose of studying the underlying physical mechanism.
Obtaining the data needed from the real system is one of the challenges particularly in applications where experiments are expensive or time consuming. Therefore, it is beneficial to get the maximum information possible from the real system using the least possible number of experiments.
In this research a new approach to model discrimination is presented that takes advantage of Monte Carlo (MC) methods. It combines a design of experiments (DOE) method with an adaptation of MC model selection methods to obtain a sequential Bayesian Markov Chain Monte Carlo model discrimination framework which is general and usable for a wide range of model discrimination problems.
The procedure has been applied to chemical engineering case studies and the promising results have been discussed. Four case studies, order of reaction, rate of FeIII formation, copolymerization, and RAFT polymerization, are presented in this study.
The first three benchmark problems allowed us to refine the proposed approach. Moreover, applying the Sequential Bayesian Monte Carlo model discrimination framework in the RAFT problem made a contribution to the polymer community by recommending analysis an approach to selecting the correct mechanism.
|
3 |
Data-Driven Methods for Modeling and Predicting Multivariate Time Series using SurrogatesChakraborty, Prithwish 05 July 2016 (has links)
Modeling and predicting multivariate time series data has been of prime interest to researchers for many decades. Traditionally, time series prediction models have focused on finding attributes that have consistent correlations with target variable(s). However, diverse surrogate signals, such as News data and Twitter chatter, are increasingly available which can provide real-time information albeit with inconsistent correlations. Intelligent use of such sources can lead to early and real-time warning systems such as Google Flu Trends. Furthermore, the target variables of interest, such as public heath surveillance, can be noisy. Thus models built for such data sources should be flexible as well as adaptable to changing correlation patterns. In this thesis we explore various methods of using surrogates to generate more reliable and timely forecasts for noisy target signals. We primarily investigate three key components of the forecasting problem viz. (i) short-term forecasting where surrogates can be employed in a now-casting framework, (ii) long-term forecasting problem where surrogates acts as forcing parameters to model system dynamics and, (iii) robust drift models that detect and exploit 'changepoints' in surrogate-target relationship to produce robust models. We explore various 'physical' and 'social' surrogate sources to study these sub-problems, primarily to generate real-time forecasts for endemic diseases. On modeling side, we employed matrix factorization and generalized linear models to detect short-term trends and explored various Bayesian sequential analysis methods to model long-term effects. Our research indicates that, in general, a combination of surrogates can lead to more robust models. Interestingly, our findings indicate that under specific scenarios, particular surrogates can decrease overall forecasting accuracy - thus providing an argument towards the use of 'Good data' against 'Big data'. / Ph. D.
|
4 |
Decision-Making for Search and Classification using Multiple Autonomous Vehicles over Large-Scale DomainsWang, Yue 01 April 2011 (has links)
This dissertation focuses on real-time decision-making for large-scale domain search and object classification using Multiple Autonomous Vehicles (MAV). In recent years, MAV systems have attracted considerable attention and have been widely utilized. Of particular interest is their application to search and classification under limited sensory capabilities. Since search requires sensor mobility and classification requires a sensor to stay within the vicinity of an object, search and classification are two competing tasks. Therefore, there is a need to develop real-time sensor allocation decision-making strategies to guarantee task accomplishment. These decisions are especially crucial when the domain is much larger than the field-of-view of a sensor, or when the number of objects to be found and classified is much larger than that of available sensors. In this work, the search problem is formulated as a coverage control problem, which aims at collecting enough data at every point within the domain to construct an awareness map. The object classification problem seeks to satisfactorily categorize the property of each found object of interest. The decision-making strategies include both sensor allocation decisions and vehicle motion control. The awareness-, Bayesian-, and risk-based decision-making strategies are developed in sequence. The awareness-based approach is developed under a deterministic framework, while the latter two are developed under a probabilistic framework where uncertainty in sensor measurement is taken into account. The risk-based decision-making strategy also analyzes the effect of measurement cost. It is further extended to an integrated detection and estimation problem with applications in optimal sensor management. Simulation-based studies are performed to confirm the effectiveness of the proposed algorithms.
|
Page generated in 0.0625 seconds