• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A BDI AGENT BASED FRAMEWORK FOR MODELING AND SIMULATION OF CYBER PHYSICAL SYSTEMS

REN, QIANGGUO January 2011 (has links)
Cyber-physical systems refer to a new generation of synergy systems with integrated computational and physical processes which interact with one other. The development and simulation of cyber-physical systems (CPSs) are obstructed by the complexity of the subsystems of which they are comprised, fundamental differences in the operation of cyber and physical elements, significant correlative dependencies among the elements, and operation in dynamic and open environments. The Multiple Belief-Desire-Intention (BDI) agent system (BDI multi-agent system) is a promising choice for overcoming these challenges, since it offers a natural way to decompose complex systems or large scale problems into decentralized, autonomous, interacting, more or less intelligent entities. In particular, BDI agents have the ability to interact with, and expand the capabilities of, the physical world through computation, communication, and control. A BDI agent has its philosophical grounds on intentionality and practical reasoning, and it is natural to combine a philosophical model of human practical reasoning with the physical operation and any cyber infrastructure. In this thesis, we introduce the BDI Model, discuss implementations of BDI agents from an ideal theoretical perspective as well as from a more practical perspective, and show how they can be used to bridge the cyber infrastructure and the physical operation using the framework. We then strengthen the framework's performance using the state-of-the-art parallel computing architecture and eventually propose a BDI agent based software framework to enable the efficient modeling and simulation of heterogeneous CPS systems in an integrated manner. / Electrical and Computer Engineering
2

An agent-based approach to dialogue management in personal assistants

Nguyen, Thi Thuc Anh, Computer Science & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Personal assistants need to allow the user to interact with the system in a flexible and adaptive way such as through spoken language dialogue. This research is aimed at achieving robust and effective dialogue management in such applications. We focus on an application, the Smart Personal Assistant (SPA), in which the user can use a variety of devices to interact with a collection of personal assistants, each specializing in a task domain. The current implementation of the SPA contains an e-mail management agent and a calendar agent that the user can interact with through a spoken dialogue and a graphical interface on PDAs. The user-system interaction is handled by a Dialogue Manager agent. We propose an agent-based approach that makes use of a BDI agent architecture for dialogue modelling and control. The Dialogue Manager agent of the SPA acts as the central point for maintaining coherent user-system interaction and coordinating the activities of the assistants. The dialogue model consists of a set of complex but modular plans for handling communicative goals. The dialogue control flow emerges automatically as the result of the agent???s plan selection by the BDI interpreter. In addition the Dialogue Manager maintains the conversational context, the domainspecific knowledge and the user model in its internal beliefs. We also consider the problem of dialogue adaptation in such agent-based dialogue systems. We present a novel way of integrating learning into a BDI architecture so that the agent can learn to select the most suitable plan among those applicable in the current context. This enables the Dialogue Manager agent to tailor its responses according to the conversational context and the user???s physical context, devices and preferences. Finally, we report the evaluation results, which indicate the robustness and effectiveness of the dialogue model in handling a range of users.
3

On intentional and social agents with graded attitudes

Casali, Ana 16 December 2008 (has links)
La principal contribución de esta Tesis es la propuesta de un modelo de agente BDI graduado (g-BDI) que permita especificar una arquitetura de agente capaz de representar y razonar con actitudes mentales graduadas. Consideramos que una arquitectura BDI más exible permitirá desarrollar agentes que alcancen mejor performance en entornos inciertos y dinámicos, al servicio de otros agentes (humanos o no) que puedan tener un conjunto de motivaciones graduadas. En el modelo g-BDI, las actitudes graduadas del agente tienen una representación explícita y adecuada. Los grados en las creencias representan la medida en que el agente cree que una fórmula es verdadera, en los deseos positivos o negativos permiten al agente establecer respectivamente, diferentes niveles de preferencias o de rechazo. Las graduaciones en las intenciones también dan una medida de preferencia pero en este caso, modelan el costo/beneficio que le trae al agente alcanzar una meta. Luego, a partir de la representación e interacción de estas actitudes graduadas, pueden ser modelados agentes que muestren diferentes tipos de comportamiento. La formalización del modelo g-BDI está basada en los sistemas multi-contextos. Diferentes lógicas modales multivaluadas se han propuesto para representar y razonarsobre las creencias, deseos e intenciones, presentando en cada caso una axiomática completa y consistente. Para tratar con la semántica operacional del modelo de agente, primero se definió un calculus para la ejecución de sistemas multi-contextos, denominado Multi-context calculus. Luego, mediante este calculus se le ha dado al modelo g-BDI semántica computacional. Por otra parte, se ha presentado una metodología para la ingeniería de agentes g-BDI en un escenario multiagente. El objeto de esta propuesta es guiar el diseño de sistemas multiagentes, a partir de un problema del mundo real. Por medio del desarrollo de un sistema recomendador en turismo como caso de estudio, donde el agente recomendador tiene una arquitectura g-BDI, se ha mostrado que este modelo es valioso para diseñar e implementar agentes concretos. Finalmente, usando este caso de estudio se ha realizado una experimentación sobre la flexibilidad y performance del modelo de agente g-BDI, demostrando que es útil para desarrollar agentes que manifiesten conductas diversas. También se ha mostrado que los resultados obtenidos con estos agentes recomendadores modelizados con actitudes graduadas, son mejores que aquellos alcanzados por los agentes con actitudes no-graduadas. / The central contribution of this dissertation is the proposal of a graded BDI agent model (g-BDI), specifying an architecture capable of representing and reasoning with graded mental attitudes. We consider that making the BDI architecture more exible will allow us to design and develop agents capable of improved performance in uncertain and dynamic environments, serving other agents (human or not) that may have a set of graded motivations.In the g-BDI model, the agent graded attitudes have an explicit and suitable representation. Belief degrees represent the extent to which the agent believes a formula to be true. Degrees of positive or negative desires allow the agent to set di_erent levels of preference or rejection respectively. Intention degrees also give a preference measure but, in this case, modelling the cost/benefit trade off of achieving an agent's goal. Then, agents having different kinds of behaviour can be modelled on the basis of the representation and interaction of their graded attitudes. The formalization of the g-BDI agent model is based on Multi-context systems and in order to represent and reason about the beliefs, desires and intentions, we followed a many-valued modal approach. Also, a sound and complete axiomatics for representing each graded attitude is proposed. Besides, in order to cope with the operational semantics aspects of the g-BDI agent model, we first defined a Multi-context calculus for Multi-context systems execution and then, using this calculus we give this agent model computational meaning.Furthermore, a software engineering process to develop graded BDI agents in a multiagent scenario is presented. The aim of the proposed methodology is to guide the design of a multiagent system starting from a real world problem. Through the development of a Tourism recommender system, where one of its principal agents is modelled as a g-BDI agent, we show that the model is useful to design and implement concrete agents.Finally, using the case study we have made some experiments concerning the exibility and performance of the g-BDI agent model, demonstrating that this agent model is useful to develop agents showing varied and rich behaviours. We also show that the results obtained by these particular recommender agents using graded attitudes improve those achieved by agents using non-graded attitudes.
4

An agent-based approach to dialogue management in personal assistants

Nguyen, Thi Thuc Anh, Computer Science & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Personal assistants need to allow the user to interact with the system in a flexible and adaptive way such as through spoken language dialogue. This research is aimed at achieving robust and effective dialogue management in such applications. We focus on an application, the Smart Personal Assistant (SPA), in which the user can use a variety of devices to interact with a collection of personal assistants, each specializing in a task domain. The current implementation of the SPA contains an e-mail management agent and a calendar agent that the user can interact with through a spoken dialogue and a graphical interface on PDAs. The user-system interaction is handled by a Dialogue Manager agent. We propose an agent-based approach that makes use of a BDI agent architecture for dialogue modelling and control. The Dialogue Manager agent of the SPA acts as the central point for maintaining coherent user-system interaction and coordinating the activities of the assistants. The dialogue model consists of a set of complex but modular plans for handling communicative goals. The dialogue control flow emerges automatically as the result of the agent???s plan selection by the BDI interpreter. In addition the Dialogue Manager maintains the conversational context, the domainspecific knowledge and the user model in its internal beliefs. We also consider the problem of dialogue adaptation in such agent-based dialogue systems. We present a novel way of integrating learning into a BDI architecture so that the agent can learn to select the most suitable plan among those applicable in the current context. This enables the Dialogue Manager agent to tailor its responses according to the conversational context and the user???s physical context, devices and preferences. Finally, we report the evaluation results, which indicate the robustness and effectiveness of the dialogue model in handling a range of users.
5

An agent-based approach to dialogue management in personal assistants

Nguyen, Thi Thuc Anh, Computer Science & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Personal assistants need to allow the user to interact with the system in a flexible and adaptive way such as through spoken language dialogue. This research is aimed at achieving robust and effective dialogue management in such applications. We focus on an application, the Smart Personal Assistant (SPA), in which the user can use a variety of devices to interact with a collection of personal assistants, each specializing in a task domain. The current implementation of the SPA contains an e-mail management agent and a calendar agent that the user can interact with through a spoken dialogue and a graphical interface on PDAs. The user-system interaction is handled by a Dialogue Manager agent. We propose an agent-based approach that makes use of a BDI agent architecture for dialogue modelling and control. The Dialogue Manager agent of the SPA acts as the central point for maintaining coherent user-system interaction and coordinating the activities of the assistants. The dialogue model consists of a set of complex but modular plans for handling communicative goals. The dialogue control flow emerges automatically as the result of the agent???s plan selection by the BDI interpreter. In addition the Dialogue Manager maintains the conversational context, the domainspecific knowledge and the user model in its internal beliefs. We also consider the problem of dialogue adaptation in such agent-based dialogue systems. We present a novel way of integrating learning into a BDI architecture so that the agent can learn to select the most suitable plan among those applicable in the current context. This enables the Dialogue Manager agent to tailor its responses according to the conversational context and the user???s physical context, devices and preferences. Finally, we report the evaluation results, which indicate the robustness and effectiveness of the dialogue model in handling a range of users.
6

An agent-based approach to dialogue management in personal assistants

Nguyen, Thi Thuc Anh, Computer Science & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Personal assistants need to allow the user to interact with the system in a flexible and adaptive way such as through spoken language dialogue. This research is aimed at achieving robust and effective dialogue management in such applications. We focus on an application, the Smart Personal Assistant (SPA), in which the user can use a variety of devices to interact with a collection of personal assistants, each specializing in a task domain. The current implementation of the SPA contains an e-mail management agent and a calendar agent that the user can interact with through a spoken dialogue and a graphical interface on PDAs. The user-system interaction is handled by a Dialogue Manager agent. We propose an agent-based approach that makes use of a BDI agent architecture for dialogue modelling and control. The Dialogue Manager agent of the SPA acts as the central point for maintaining coherent user-system interaction and coordinating the activities of the assistants. The dialogue model consists of a set of complex but modular plans for handling communicative goals. The dialogue control flow emerges automatically as the result of the agent???s plan selection by the BDI interpreter. In addition the Dialogue Manager maintains the conversational context, the domainspecific knowledge and the user model in its internal beliefs. We also consider the problem of dialogue adaptation in such agent-based dialogue systems. We present a novel way of integrating learning into a BDI architecture so that the agent can learn to select the most suitable plan among those applicable in the current context. This enables the Dialogue Manager agent to tailor its responses according to the conversational context and the user???s physical context, devices and preferences. Finally, we report the evaluation results, which indicate the robustness and effectiveness of the dialogue model in handling a range of users.
7

Applying semantic technologies to multi-agent models in the context of business simulations

Farrenkopf, Thomas January 2017 (has links)
Agent-based simulations are an effective simulation technique that can flexibly be applied to real-world business problems. By integrating such simulations into business games, they become a widely accepted educational instrument in the context of business training. Not only can they be used to train standard behaviour in training scenarios but they can also be used for open experimentation to discover structure in complex contexts (e.g. complex adaptive systems) and to verify behaviours that have been predicted on the basis of theoretical considerations. Traditional modelling techniques are built on mathematical models consisting of differential or difference equations (e.g. the well-known system dynamics approach). However, individual behaviour is not visible in these equations. This problem is addressed by using software agents to simulate individuals and to model their actions in response to external stimuli. To be effective, business training tools have to provide sufficiently realistic models of real-world aspects. Ideally, system effects on a macroscopic level are caused by behaviour of system components on a more microscopic level. For instance, in modelling market mechanisms market participants can explicitly be modelled as agents with individual behaviour and personal goals. Agents can communicate and act on the basis of what they know and which communication acts they perform. The evolution of the market then depends on the actions of the participants directly and not on abstract mathematical expressions. Generally, agent-based modelling is a challenging task, when modelling knowledge and behaviour. With the rise of the so-called semantic web ontologies have become popular, allowing the representation of knowledge using standardised formal languages which can be made available to agents acting in a simulation. However, the combination of agent-based systems with ontologies has not yet been researched sufficiently, because both concepts (web ontology languages and agent oriented programming languages) have been developed independently and the link has not yet been built adequately. Using ontologies as a knowledge base allows access to powerful standardised inference engines that offer leverage for the decision process of the agent. Agents can then determine their actions in accordance with this knowledge. To model agents using ontologies creates a new perspective for multi-agent simulation scenarios as programming details are reduced and a separation of modelling aspects from coding details is promising as business simulation scenarios can be set up with a reduced development effort. This thesis focuses on how ontologies can be integrated utilising the agent framework Jadex. A basic architecture with layered ontologies and its integration into the belief-desire-intention (BDI) agent model is presented. The abstract level of the approach guarantees applicability to different simulation scenarios which can be modelled by creating appropriate ontologies. Examples are based upon the simulation of market mechanisms within the context of different industries. The approach is implemented in the integrated simulation environment AGADE which incorporates agent-based and semantic technologies. Simulations for different scenarios that model typical market scenarios are presented.
8

Choices that make you chnage your mind : a dynamic epistemic logic approach to the semantics of BDI agent programming languages / Dinâmica de atitudes mentais em linguagens de programação BDI

Souza, Marlo Vieira dos Santos e January 2016 (has links)
Dada a importância de agentes inteligentes e sistemas multiagentes na Ciência da Computação e na Inteligência Artificial, a programação orientada a agentes (AOP, do inglês Agent-oriented programming) emergiu como um novo paradigma para a criação de sistemas computacionais complexos. Assim, nas últimas décadas, houve um florescimento da literatura em programação orientada a agentes e, com isso, surgiram diversas linguages de programação seguindo tal paradigma, como AgentSpeak (RAO, 1996; BORDINI; HUBNER; WOOLDRIDGE, 2007), Jadex (POKAHR; BRAUBACH; LAMERSDORF, 2005), 3APL/2APL (DASTANI; VAN RIEMSDIJK; MEYER, 2005; DASTANI, 2008), GOAL (HINDRIKS et al., 2001), entre outras. Programação orientada a agentes é um paradigma de programação proposto por Shoham (1993) no qual os elementos mínimos de um programa são agentes. Shoham (1993) defende que agentes autônomos e sistemas multiagentes configuram-se como uma forma diferente de se organizar uma solução para um problema computacional, de forma que a construção de um sistema multiagente para a solução de um problema pode ser entendida como um paradgima de programação. Para entender tal paradigma, é necessário entender o conceito de agente. Agente, nesse contexto, é uma entidade computacional descrita por certos atributos - chamados de atitudes mentais - que descrevem o seu estado interno e sua relação com o ambiente externo. Atribuir a interpretação de atitudes mentais a tais atributos é válida, defende Shoham (1993), uma vez que esses atributos se comportem de forma semelhante as atitudes mentais usadas para descrever o comportamento humano e desde que sejam pragmaticamente justificáveis, i.e. úteis à solução do problema. Entender, portanto, o significado de termos como ’crença’, ’desejo’, ’intenção’, etc., assim como suas propriedades fundamentais, é de fundamental importância para estabelecer linguagens de programação orientadas a agentes. Nesse trabalho, vamos nos preocupar com um tipo específico de linguagens de programação orientadas a agentes, as chamadas linguagens BDI. Linguagens BDI são baseadas na teoria BDI da Filosofia da Ação em que o estado mental de um agente (e suas ações) é descrito por suas crenças, desejos e intenções. Enquanto a construção de sistemas baseados em agentes e linguagens de programação foram tópicos bastante discutidos na literatura, a conexão entre tais sistemas e linguagens com o trabalho teórico proveniente da Inteligência Artificial e da Filosofia da Ação ainda não está bem estabelecida. Essa distância entre a teoria e a prática da construção de sistemas é bem reconhecida na literatura relevante e comumente chamada de “gap semântico” (gap em inglês significa lacuna ou abertura e representa a distância entre os modelos teóricos e sua implementação em linguagens e sistemas). Muitos trabalhos tentaram atacar o problema do gap semântico para linguagens de programação específicas, como para as linguagens AgentSpeak (BORDINI; MOREIRA, 2004), GOAL (HINDRIKS; VAN DER HOEK, 2008), etc. De fato, Rao (1996, p. 44) afirma que “O cálice sagrado da pesquisa em agentes BDI é mostrar uma correspondência 1-a-1 com uma linguagem razoavelmente útil e expressiva” (tradução nossa)1 Uma limitação crucial, em nossa opinião, das tentativas passadas de estabeler uma conexão entre linguagens de programação orientadas a agentes e lógicas BDI é que elas se baseiam em estabelecer a interpretação de um programa somente no nível estático. De outra forma, dado um estado de um programa, tais trabalhos tentam estabelecer uma interpretação declarativa, i.e. baseada em lógica, do estado do programa respresentando assim o estado mental do agente. Não é claro, entretanto, como a execução do programa pode ser entendida enquanto mudanças no estado mental do agente. A razão para isso, nós acreditamos, está nos formalismos utilizados para especificar agentes BDI. De fato, as lógicas BDI propostas são, em sua maioria, estáticas ou incapazes de representar ações mentais. O ato de revisão uma crença, adotar um objetivo ou mudar de opinião são exemplos de ações mentais, i.e. ações que são executadas internarmente ao agente e afetando somente seu estado mental, sendo portanto não observáveis. Tais ações são, em nossa opinião, intrinsecamente diferentes de ações ônticas que consistem de comportamento observável e que possivelmente afeta o ambiente externo ao agente. Essa diferença é comumente reconhecida no estudo da semântica de linguagens de programação orientadas a agentes (BORDINI; HUBNER; WOOLDRIDGE, 2007; D’INVERNO et al., 1998; MENEGUZZI; LUCK, 2009), entretanto os formalismos disponíveis para se especificar raciocínio BDI, em nosso conhecimento, não provem recursos expressivos para codificar tal diferença. Nós acreditamos que, para atacar o gap semântico, precisamos de um ferramental semântico que permita a especificação de ações mentais, assim como ações ônticas. Lógicas Dinâmicas Epistêmicas (DEL, do inglês Dynamic Epistemic Logic) são uma família de lógicas modais dinâmicas largamente utilizadas para estudar os fenômenos de mudança do estado mental de agentes. Os trabalhos em DEL foram fortemente influenciados pela escola holandesa de lógica, com maior proponente Johna Van Benthem, e seu “desvio dinâmico” em lógica (dynamic turn em inglês) que propõe a utilização de lógicas dinâmicas para compreender ações de mudanças mentais (VAN BENTHEM, 1996). O formalismo das DEL deriva de diversas vertentes do estudo de mudança epistêmica, como o trabalho em teoria da Revisão de Crenças AGM (ALCHOURRÓN; GÄRDENFORS; MAKINSON, 1985), e Epistemologia Bayesiana (HÁJEK; HARTMANN, 2010). Tais lógicas adotam a abordagem, primeiro proposta por Segerberg (1999), de representar mudanças epistêmicas dentro da mesma linguagem utilizada para representar as noções de crença e conhecimento, diferente da abordagem extra-semântica do Revisão de Crenças a la AGM. No contexto das DEL, uma lógica nos parece particulamente interessante para o estudo de programação orientada a agentes: a Lógica Dinâmica de Preferências (DPL, do inglês Dynamic Preference Logic) de Girard (2008). DPL, também conhecida como lógica dinâmica de ordem, é uma lógica dinâmica para o estudo de preferências que possui grande expressibilidade para codificar diversas atiutudes mentais. De fato, tal lógica foi empregada para o estudo de obrigações (VAN BENTHEM; GROSSI; LIU, 2014), crenças (GIRARD; ROTT, 2014), preferências (GIRARD, 2008), etc. Tal lógica possui fortes ligações com raciocínio não-monotônico e com lógicas já propostas para o estudo de atitudes mentais na área de Teoria da Decisão (BOUTILIER, 1994b) Nós acreditamos que DPL constitui um candidato ideal para ser utilizado como ferramental semântico para se estudar atitudes mentais da teoria BDI por permitir grande flexibilidade para representação de tais atitudes, assim como por permitir a fácil representação de ações mentais como revisão de crenças, adoção de desejos, etc. Mais ainda, pelo trabalho de Liu (2011), sabemos que existem representações sintáticas dos modelos de tal lógica que podem ser utilizados para raciocinar sobre atitudes mentais, sendo assim candidatos naturais para serem utilizados como estruturas de dados para uma implementação semanticamente fundamentada de uma linguagem de programação orientada a agentes. Assim, nesse trabalho nós avançamos no problema de reduzir o gap semântico entre linguagens de programação orientadas a agentes e formalismos lógicos para especificar agentes BDI. Nós exploramos não somente como estabelecer as conexões entre as estruturas estáticas, i.e. estado de um programa e um modelo da lógica, mas também como as ações de raciocínio pelas quais se especifica a semântica formal de uma linguagem de programação orientada a agentes podem ser entendidas dentro da lógica como operadores dinâmicos que representam ações mentais do agente. Com essa conexão, nós provemos também um conjunto de operações que podem ser utilizadas para se implementar uma linguagem de programação orientada a agentes e que preservam a conexão entre os programas dessa linguagem e os modelos que representam o estado mental de um agente. Finalmente, com essas conexões, nós desenvolvemos um arcabouço para estudar a dinâmica de atitudes mentais, tais como crenças, desejos e inteções, e como reproduzir essas propriedades na semântica de linguagens de programação. / As the notions of Agency and Multiagent System became important topics for the Computer Science and Artificial Intelligence communities, Agent Programming has been proposed as a paradigm for the development of computer systems. As such, in the last decade, we have seen the flourishing of the literature on Agent Programming with the proposal of several programming languages, e.g. AgentSpeak (RAO, 1996; BORDINI; HUBNER;WOOLDRIDGE, 2007), Jadex (POKAHR; BRAUBACH; LAMERSDORF, 2005), JACK (HOWDEN et al., 2001), 3APL/2APL (DASTANI; VAN RIEMSDIJK; MEYER, 2005; DASTANI, 2008), GOAL (HINDRIKS et al., 2001), among others. Agent Programming is a programming paradigm proposed by Shoham (1993) in which the minimal units are agents. An agent is an entity composed of mental attitudes, that describe the its internal state - such as its motivations and decisions - as well as its relation to the external world - its beliefs about the world, its obligations, etc. This programming paradigm stems from the work on Philosophy of Action and Artificial Intelligence concerning the notions of intentional action and formal models of agents’ mental states. As such, the meaning (and properties) of notions such as belief, desire, intention, etc. as studied in these disciplines are of central importance to the area. Particularly, we will concentrate in our work on agent programming languages influenced by the so-called BDI paradigm of agency, in which an agent is described by her beliefs, desires, intentions. While the engineering of such languages has been much discussed, the connections between the theoretical work on Philosophy and Artificial Intelligence and its implementations in programming languages are not so clearly understood yet. This distance between theory and practice has been acknowledged in the literature for agent programming languages and is commonly known as the “semantic gap”. Many authors have attempted to tackle this problem for different programming languages, as for the case of AgentSpeak (BORDINI; MOREIRA, 2004), GOAL (HINDRIKS; VAN DER HOEK, 2008), etc. In fact, Rao (1996, p. 44) states that “[t]he holy grail of BDI agent research is to show such a one-to-one correspondence with a reasonably useful and expressive language.” One crucial limitation in the previous attempts to connect agent programming languages and BDI logics, in our opinion, is that the connection is mainly established at the static level, i.e. they show how a given program state can be interpreted as a BDI mental state. It is not clear in these attempts, however, how the execution of the program may be understood as changes in the mental state of the agent. The reason for this, in our opinion, is that the formalisms employed to construct BDI logics are usually static, i.e. cannot represent actions and change, or can only represent ontic change, not mental change. The act of revising one’s beliefs or adopting a given desire are mental actions (or internal actions) and, as such, different from performing an action over the environment (an ontic or external action). This difference is well recognized in the literature on the semantics of agent programming languages (D’INVERNO et al., 1998; BORDINI; HUBNER; WOOLDRIDGE, 2007; MENEGUZZI; LUCK, 2009), but this difference is lost when translating their semantics into a BDI logic. We believe the main reason for that is a lack of expressibility in the formalisms used to model BDI reasoning. Dynamic Epistemic Logic, or DEL, is a family of dynamic modal logics to study information change and the dynamics of mental attitudes inspired by the Dutch School on the “dynamic turn” in Logic (VAN BENTHEM, 1996). This formalism stems from various approaches in the study of belief change and differs from previous studies, such as AGM Belief Revision, by shifting from extra-logical characterization of changes in the agents attitudes to their integration within the representation language. In the context of Dynamic Epistemic Logic, the Dynamic Preference Logic of Girard (2008) seems like an ideal candidate, having already been used to study diverse mental attitudes, such as Obligations (VAN BENTHEM; GROSSI; LIU, 2014), Beliefs (GIRARD; ROTT, 2014), Preferences (GIRARD, 2008), etc. We believe Dynamic Preference Logic to be the ideal semantic framework to construct a formal theory of BDI reasoning which can be used to specify an agent programming language semantics. The reason for that is that inside this logic we can faithfully represent the static state of a agent program, i.e. the agent’s mental state, as well as the changes in the state of the agent program by means of the agent’s reasoning, i.e. by means of her mental actions. As such, in this work we go further in closing the semantic gap between agent programs and agency theories and explore not only the static connections between program states and possible worlds models, but also how the program execution of a language based on common operations - such as addition/removal of information in the already mentioned bases - may be understood as semantic transformations in the models, as studied in Dynamic Logics. With this, we provide a set of operations for the implementation of agent programming languages which are semantically safe and we connect an agent program execution with the dynamic properties in the formal theory. Lastly, by these connections, we provide a framework to study the dynamics of different mental attitudes, such as beliefs, goals and intentions, and how to reproduce the desirable properties proposed in theories of Agency in a programming language semantics.
9

Choices that make you chnage your mind : a dynamic epistemic logic approach to the semantics of BDI agent programming languages / Dinâmica de atitudes mentais em linguagens de programação BDI

Souza, Marlo Vieira dos Santos e January 2016 (has links)
Dada a importância de agentes inteligentes e sistemas multiagentes na Ciência da Computação e na Inteligência Artificial, a programação orientada a agentes (AOP, do inglês Agent-oriented programming) emergiu como um novo paradigma para a criação de sistemas computacionais complexos. Assim, nas últimas décadas, houve um florescimento da literatura em programação orientada a agentes e, com isso, surgiram diversas linguages de programação seguindo tal paradigma, como AgentSpeak (RAO, 1996; BORDINI; HUBNER; WOOLDRIDGE, 2007), Jadex (POKAHR; BRAUBACH; LAMERSDORF, 2005), 3APL/2APL (DASTANI; VAN RIEMSDIJK; MEYER, 2005; DASTANI, 2008), GOAL (HINDRIKS et al., 2001), entre outras. Programação orientada a agentes é um paradigma de programação proposto por Shoham (1993) no qual os elementos mínimos de um programa são agentes. Shoham (1993) defende que agentes autônomos e sistemas multiagentes configuram-se como uma forma diferente de se organizar uma solução para um problema computacional, de forma que a construção de um sistema multiagente para a solução de um problema pode ser entendida como um paradgima de programação. Para entender tal paradigma, é necessário entender o conceito de agente. Agente, nesse contexto, é uma entidade computacional descrita por certos atributos - chamados de atitudes mentais - que descrevem o seu estado interno e sua relação com o ambiente externo. Atribuir a interpretação de atitudes mentais a tais atributos é válida, defende Shoham (1993), uma vez que esses atributos se comportem de forma semelhante as atitudes mentais usadas para descrever o comportamento humano e desde que sejam pragmaticamente justificáveis, i.e. úteis à solução do problema. Entender, portanto, o significado de termos como ’crença’, ’desejo’, ’intenção’, etc., assim como suas propriedades fundamentais, é de fundamental importância para estabelecer linguagens de programação orientadas a agentes. Nesse trabalho, vamos nos preocupar com um tipo específico de linguagens de programação orientadas a agentes, as chamadas linguagens BDI. Linguagens BDI são baseadas na teoria BDI da Filosofia da Ação em que o estado mental de um agente (e suas ações) é descrito por suas crenças, desejos e intenções. Enquanto a construção de sistemas baseados em agentes e linguagens de programação foram tópicos bastante discutidos na literatura, a conexão entre tais sistemas e linguagens com o trabalho teórico proveniente da Inteligência Artificial e da Filosofia da Ação ainda não está bem estabelecida. Essa distância entre a teoria e a prática da construção de sistemas é bem reconhecida na literatura relevante e comumente chamada de “gap semântico” (gap em inglês significa lacuna ou abertura e representa a distância entre os modelos teóricos e sua implementação em linguagens e sistemas). Muitos trabalhos tentaram atacar o problema do gap semântico para linguagens de programação específicas, como para as linguagens AgentSpeak (BORDINI; MOREIRA, 2004), GOAL (HINDRIKS; VAN DER HOEK, 2008), etc. De fato, Rao (1996, p. 44) afirma que “O cálice sagrado da pesquisa em agentes BDI é mostrar uma correspondência 1-a-1 com uma linguagem razoavelmente útil e expressiva” (tradução nossa)1 Uma limitação crucial, em nossa opinião, das tentativas passadas de estabeler uma conexão entre linguagens de programação orientadas a agentes e lógicas BDI é que elas se baseiam em estabelecer a interpretação de um programa somente no nível estático. De outra forma, dado um estado de um programa, tais trabalhos tentam estabelecer uma interpretação declarativa, i.e. baseada em lógica, do estado do programa respresentando assim o estado mental do agente. Não é claro, entretanto, como a execução do programa pode ser entendida enquanto mudanças no estado mental do agente. A razão para isso, nós acreditamos, está nos formalismos utilizados para especificar agentes BDI. De fato, as lógicas BDI propostas são, em sua maioria, estáticas ou incapazes de representar ações mentais. O ato de revisão uma crença, adotar um objetivo ou mudar de opinião são exemplos de ações mentais, i.e. ações que são executadas internarmente ao agente e afetando somente seu estado mental, sendo portanto não observáveis. Tais ações são, em nossa opinião, intrinsecamente diferentes de ações ônticas que consistem de comportamento observável e que possivelmente afeta o ambiente externo ao agente. Essa diferença é comumente reconhecida no estudo da semântica de linguagens de programação orientadas a agentes (BORDINI; HUBNER; WOOLDRIDGE, 2007; D’INVERNO et al., 1998; MENEGUZZI; LUCK, 2009), entretanto os formalismos disponíveis para se especificar raciocínio BDI, em nosso conhecimento, não provem recursos expressivos para codificar tal diferença. Nós acreditamos que, para atacar o gap semântico, precisamos de um ferramental semântico que permita a especificação de ações mentais, assim como ações ônticas. Lógicas Dinâmicas Epistêmicas (DEL, do inglês Dynamic Epistemic Logic) são uma família de lógicas modais dinâmicas largamente utilizadas para estudar os fenômenos de mudança do estado mental de agentes. Os trabalhos em DEL foram fortemente influenciados pela escola holandesa de lógica, com maior proponente Johna Van Benthem, e seu “desvio dinâmico” em lógica (dynamic turn em inglês) que propõe a utilização de lógicas dinâmicas para compreender ações de mudanças mentais (VAN BENTHEM, 1996). O formalismo das DEL deriva de diversas vertentes do estudo de mudança epistêmica, como o trabalho em teoria da Revisão de Crenças AGM (ALCHOURRÓN; GÄRDENFORS; MAKINSON, 1985), e Epistemologia Bayesiana (HÁJEK; HARTMANN, 2010). Tais lógicas adotam a abordagem, primeiro proposta por Segerberg (1999), de representar mudanças epistêmicas dentro da mesma linguagem utilizada para representar as noções de crença e conhecimento, diferente da abordagem extra-semântica do Revisão de Crenças a la AGM. No contexto das DEL, uma lógica nos parece particulamente interessante para o estudo de programação orientada a agentes: a Lógica Dinâmica de Preferências (DPL, do inglês Dynamic Preference Logic) de Girard (2008). DPL, também conhecida como lógica dinâmica de ordem, é uma lógica dinâmica para o estudo de preferências que possui grande expressibilidade para codificar diversas atiutudes mentais. De fato, tal lógica foi empregada para o estudo de obrigações (VAN BENTHEM; GROSSI; LIU, 2014), crenças (GIRARD; ROTT, 2014), preferências (GIRARD, 2008), etc. Tal lógica possui fortes ligações com raciocínio não-monotônico e com lógicas já propostas para o estudo de atitudes mentais na área de Teoria da Decisão (BOUTILIER, 1994b) Nós acreditamos que DPL constitui um candidato ideal para ser utilizado como ferramental semântico para se estudar atitudes mentais da teoria BDI por permitir grande flexibilidade para representação de tais atitudes, assim como por permitir a fácil representação de ações mentais como revisão de crenças, adoção de desejos, etc. Mais ainda, pelo trabalho de Liu (2011), sabemos que existem representações sintáticas dos modelos de tal lógica que podem ser utilizados para raciocinar sobre atitudes mentais, sendo assim candidatos naturais para serem utilizados como estruturas de dados para uma implementação semanticamente fundamentada de uma linguagem de programação orientada a agentes. Assim, nesse trabalho nós avançamos no problema de reduzir o gap semântico entre linguagens de programação orientadas a agentes e formalismos lógicos para especificar agentes BDI. Nós exploramos não somente como estabelecer as conexões entre as estruturas estáticas, i.e. estado de um programa e um modelo da lógica, mas também como as ações de raciocínio pelas quais se especifica a semântica formal de uma linguagem de programação orientada a agentes podem ser entendidas dentro da lógica como operadores dinâmicos que representam ações mentais do agente. Com essa conexão, nós provemos também um conjunto de operações que podem ser utilizadas para se implementar uma linguagem de programação orientada a agentes e que preservam a conexão entre os programas dessa linguagem e os modelos que representam o estado mental de um agente. Finalmente, com essas conexões, nós desenvolvemos um arcabouço para estudar a dinâmica de atitudes mentais, tais como crenças, desejos e inteções, e como reproduzir essas propriedades na semântica de linguagens de programação. / As the notions of Agency and Multiagent System became important topics for the Computer Science and Artificial Intelligence communities, Agent Programming has been proposed as a paradigm for the development of computer systems. As such, in the last decade, we have seen the flourishing of the literature on Agent Programming with the proposal of several programming languages, e.g. AgentSpeak (RAO, 1996; BORDINI; HUBNER;WOOLDRIDGE, 2007), Jadex (POKAHR; BRAUBACH; LAMERSDORF, 2005), JACK (HOWDEN et al., 2001), 3APL/2APL (DASTANI; VAN RIEMSDIJK; MEYER, 2005; DASTANI, 2008), GOAL (HINDRIKS et al., 2001), among others. Agent Programming is a programming paradigm proposed by Shoham (1993) in which the minimal units are agents. An agent is an entity composed of mental attitudes, that describe the its internal state - such as its motivations and decisions - as well as its relation to the external world - its beliefs about the world, its obligations, etc. This programming paradigm stems from the work on Philosophy of Action and Artificial Intelligence concerning the notions of intentional action and formal models of agents’ mental states. As such, the meaning (and properties) of notions such as belief, desire, intention, etc. as studied in these disciplines are of central importance to the area. Particularly, we will concentrate in our work on agent programming languages influenced by the so-called BDI paradigm of agency, in which an agent is described by her beliefs, desires, intentions. While the engineering of such languages has been much discussed, the connections between the theoretical work on Philosophy and Artificial Intelligence and its implementations in programming languages are not so clearly understood yet. This distance between theory and practice has been acknowledged in the literature for agent programming languages and is commonly known as the “semantic gap”. Many authors have attempted to tackle this problem for different programming languages, as for the case of AgentSpeak (BORDINI; MOREIRA, 2004), GOAL (HINDRIKS; VAN DER HOEK, 2008), etc. In fact, Rao (1996, p. 44) states that “[t]he holy grail of BDI agent research is to show such a one-to-one correspondence with a reasonably useful and expressive language.” One crucial limitation in the previous attempts to connect agent programming languages and BDI logics, in our opinion, is that the connection is mainly established at the static level, i.e. they show how a given program state can be interpreted as a BDI mental state. It is not clear in these attempts, however, how the execution of the program may be understood as changes in the mental state of the agent. The reason for this, in our opinion, is that the formalisms employed to construct BDI logics are usually static, i.e. cannot represent actions and change, or can only represent ontic change, not mental change. The act of revising one’s beliefs or adopting a given desire are mental actions (or internal actions) and, as such, different from performing an action over the environment (an ontic or external action). This difference is well recognized in the literature on the semantics of agent programming languages (D’INVERNO et al., 1998; BORDINI; HUBNER; WOOLDRIDGE, 2007; MENEGUZZI; LUCK, 2009), but this difference is lost when translating their semantics into a BDI logic. We believe the main reason for that is a lack of expressibility in the formalisms used to model BDI reasoning. Dynamic Epistemic Logic, or DEL, is a family of dynamic modal logics to study information change and the dynamics of mental attitudes inspired by the Dutch School on the “dynamic turn” in Logic (VAN BENTHEM, 1996). This formalism stems from various approaches in the study of belief change and differs from previous studies, such as AGM Belief Revision, by shifting from extra-logical characterization of changes in the agents attitudes to their integration within the representation language. In the context of Dynamic Epistemic Logic, the Dynamic Preference Logic of Girard (2008) seems like an ideal candidate, having already been used to study diverse mental attitudes, such as Obligations (VAN BENTHEM; GROSSI; LIU, 2014), Beliefs (GIRARD; ROTT, 2014), Preferences (GIRARD, 2008), etc. We believe Dynamic Preference Logic to be the ideal semantic framework to construct a formal theory of BDI reasoning which can be used to specify an agent programming language semantics. The reason for that is that inside this logic we can faithfully represent the static state of a agent program, i.e. the agent’s mental state, as well as the changes in the state of the agent program by means of the agent’s reasoning, i.e. by means of her mental actions. As such, in this work we go further in closing the semantic gap between agent programs and agency theories and explore not only the static connections between program states and possible worlds models, but also how the program execution of a language based on common operations - such as addition/removal of information in the already mentioned bases - may be understood as semantic transformations in the models, as studied in Dynamic Logics. With this, we provide a set of operations for the implementation of agent programming languages which are semantically safe and we connect an agent program execution with the dynamic properties in the formal theory. Lastly, by these connections, we provide a framework to study the dynamics of different mental attitudes, such as beliefs, goals and intentions, and how to reproduce the desirable properties proposed in theories of Agency in a programming language semantics.
10

Choices that make you chnage your mind : a dynamic epistemic logic approach to the semantics of BDI agent programming languages / Dinâmica de atitudes mentais em linguagens de programação BDI

Souza, Marlo Vieira dos Santos e January 2016 (has links)
Dada a importância de agentes inteligentes e sistemas multiagentes na Ciência da Computação e na Inteligência Artificial, a programação orientada a agentes (AOP, do inglês Agent-oriented programming) emergiu como um novo paradigma para a criação de sistemas computacionais complexos. Assim, nas últimas décadas, houve um florescimento da literatura em programação orientada a agentes e, com isso, surgiram diversas linguages de programação seguindo tal paradigma, como AgentSpeak (RAO, 1996; BORDINI; HUBNER; WOOLDRIDGE, 2007), Jadex (POKAHR; BRAUBACH; LAMERSDORF, 2005), 3APL/2APL (DASTANI; VAN RIEMSDIJK; MEYER, 2005; DASTANI, 2008), GOAL (HINDRIKS et al., 2001), entre outras. Programação orientada a agentes é um paradigma de programação proposto por Shoham (1993) no qual os elementos mínimos de um programa são agentes. Shoham (1993) defende que agentes autônomos e sistemas multiagentes configuram-se como uma forma diferente de se organizar uma solução para um problema computacional, de forma que a construção de um sistema multiagente para a solução de um problema pode ser entendida como um paradgima de programação. Para entender tal paradigma, é necessário entender o conceito de agente. Agente, nesse contexto, é uma entidade computacional descrita por certos atributos - chamados de atitudes mentais - que descrevem o seu estado interno e sua relação com o ambiente externo. Atribuir a interpretação de atitudes mentais a tais atributos é válida, defende Shoham (1993), uma vez que esses atributos se comportem de forma semelhante as atitudes mentais usadas para descrever o comportamento humano e desde que sejam pragmaticamente justificáveis, i.e. úteis à solução do problema. Entender, portanto, o significado de termos como ’crença’, ’desejo’, ’intenção’, etc., assim como suas propriedades fundamentais, é de fundamental importância para estabelecer linguagens de programação orientadas a agentes. Nesse trabalho, vamos nos preocupar com um tipo específico de linguagens de programação orientadas a agentes, as chamadas linguagens BDI. Linguagens BDI são baseadas na teoria BDI da Filosofia da Ação em que o estado mental de um agente (e suas ações) é descrito por suas crenças, desejos e intenções. Enquanto a construção de sistemas baseados em agentes e linguagens de programação foram tópicos bastante discutidos na literatura, a conexão entre tais sistemas e linguagens com o trabalho teórico proveniente da Inteligência Artificial e da Filosofia da Ação ainda não está bem estabelecida. Essa distância entre a teoria e a prática da construção de sistemas é bem reconhecida na literatura relevante e comumente chamada de “gap semântico” (gap em inglês significa lacuna ou abertura e representa a distância entre os modelos teóricos e sua implementação em linguagens e sistemas). Muitos trabalhos tentaram atacar o problema do gap semântico para linguagens de programação específicas, como para as linguagens AgentSpeak (BORDINI; MOREIRA, 2004), GOAL (HINDRIKS; VAN DER HOEK, 2008), etc. De fato, Rao (1996, p. 44) afirma que “O cálice sagrado da pesquisa em agentes BDI é mostrar uma correspondência 1-a-1 com uma linguagem razoavelmente útil e expressiva” (tradução nossa)1 Uma limitação crucial, em nossa opinião, das tentativas passadas de estabeler uma conexão entre linguagens de programação orientadas a agentes e lógicas BDI é que elas se baseiam em estabelecer a interpretação de um programa somente no nível estático. De outra forma, dado um estado de um programa, tais trabalhos tentam estabelecer uma interpretação declarativa, i.e. baseada em lógica, do estado do programa respresentando assim o estado mental do agente. Não é claro, entretanto, como a execução do programa pode ser entendida enquanto mudanças no estado mental do agente. A razão para isso, nós acreditamos, está nos formalismos utilizados para especificar agentes BDI. De fato, as lógicas BDI propostas são, em sua maioria, estáticas ou incapazes de representar ações mentais. O ato de revisão uma crença, adotar um objetivo ou mudar de opinião são exemplos de ações mentais, i.e. ações que são executadas internarmente ao agente e afetando somente seu estado mental, sendo portanto não observáveis. Tais ações são, em nossa opinião, intrinsecamente diferentes de ações ônticas que consistem de comportamento observável e que possivelmente afeta o ambiente externo ao agente. Essa diferença é comumente reconhecida no estudo da semântica de linguagens de programação orientadas a agentes (BORDINI; HUBNER; WOOLDRIDGE, 2007; D’INVERNO et al., 1998; MENEGUZZI; LUCK, 2009), entretanto os formalismos disponíveis para se especificar raciocínio BDI, em nosso conhecimento, não provem recursos expressivos para codificar tal diferença. Nós acreditamos que, para atacar o gap semântico, precisamos de um ferramental semântico que permita a especificação de ações mentais, assim como ações ônticas. Lógicas Dinâmicas Epistêmicas (DEL, do inglês Dynamic Epistemic Logic) são uma família de lógicas modais dinâmicas largamente utilizadas para estudar os fenômenos de mudança do estado mental de agentes. Os trabalhos em DEL foram fortemente influenciados pela escola holandesa de lógica, com maior proponente Johna Van Benthem, e seu “desvio dinâmico” em lógica (dynamic turn em inglês) que propõe a utilização de lógicas dinâmicas para compreender ações de mudanças mentais (VAN BENTHEM, 1996). O formalismo das DEL deriva de diversas vertentes do estudo de mudança epistêmica, como o trabalho em teoria da Revisão de Crenças AGM (ALCHOURRÓN; GÄRDENFORS; MAKINSON, 1985), e Epistemologia Bayesiana (HÁJEK; HARTMANN, 2010). Tais lógicas adotam a abordagem, primeiro proposta por Segerberg (1999), de representar mudanças epistêmicas dentro da mesma linguagem utilizada para representar as noções de crença e conhecimento, diferente da abordagem extra-semântica do Revisão de Crenças a la AGM. No contexto das DEL, uma lógica nos parece particulamente interessante para o estudo de programação orientada a agentes: a Lógica Dinâmica de Preferências (DPL, do inglês Dynamic Preference Logic) de Girard (2008). DPL, também conhecida como lógica dinâmica de ordem, é uma lógica dinâmica para o estudo de preferências que possui grande expressibilidade para codificar diversas atiutudes mentais. De fato, tal lógica foi empregada para o estudo de obrigações (VAN BENTHEM; GROSSI; LIU, 2014), crenças (GIRARD; ROTT, 2014), preferências (GIRARD, 2008), etc. Tal lógica possui fortes ligações com raciocínio não-monotônico e com lógicas já propostas para o estudo de atitudes mentais na área de Teoria da Decisão (BOUTILIER, 1994b) Nós acreditamos que DPL constitui um candidato ideal para ser utilizado como ferramental semântico para se estudar atitudes mentais da teoria BDI por permitir grande flexibilidade para representação de tais atitudes, assim como por permitir a fácil representação de ações mentais como revisão de crenças, adoção de desejos, etc. Mais ainda, pelo trabalho de Liu (2011), sabemos que existem representações sintáticas dos modelos de tal lógica que podem ser utilizados para raciocinar sobre atitudes mentais, sendo assim candidatos naturais para serem utilizados como estruturas de dados para uma implementação semanticamente fundamentada de uma linguagem de programação orientada a agentes. Assim, nesse trabalho nós avançamos no problema de reduzir o gap semântico entre linguagens de programação orientadas a agentes e formalismos lógicos para especificar agentes BDI. Nós exploramos não somente como estabelecer as conexões entre as estruturas estáticas, i.e. estado de um programa e um modelo da lógica, mas também como as ações de raciocínio pelas quais se especifica a semântica formal de uma linguagem de programação orientada a agentes podem ser entendidas dentro da lógica como operadores dinâmicos que representam ações mentais do agente. Com essa conexão, nós provemos também um conjunto de operações que podem ser utilizadas para se implementar uma linguagem de programação orientada a agentes e que preservam a conexão entre os programas dessa linguagem e os modelos que representam o estado mental de um agente. Finalmente, com essas conexões, nós desenvolvemos um arcabouço para estudar a dinâmica de atitudes mentais, tais como crenças, desejos e inteções, e como reproduzir essas propriedades na semântica de linguagens de programação. / As the notions of Agency and Multiagent System became important topics for the Computer Science and Artificial Intelligence communities, Agent Programming has been proposed as a paradigm for the development of computer systems. As such, in the last decade, we have seen the flourishing of the literature on Agent Programming with the proposal of several programming languages, e.g. AgentSpeak (RAO, 1996; BORDINI; HUBNER;WOOLDRIDGE, 2007), Jadex (POKAHR; BRAUBACH; LAMERSDORF, 2005), JACK (HOWDEN et al., 2001), 3APL/2APL (DASTANI; VAN RIEMSDIJK; MEYER, 2005; DASTANI, 2008), GOAL (HINDRIKS et al., 2001), among others. Agent Programming is a programming paradigm proposed by Shoham (1993) in which the minimal units are agents. An agent is an entity composed of mental attitudes, that describe the its internal state - such as its motivations and decisions - as well as its relation to the external world - its beliefs about the world, its obligations, etc. This programming paradigm stems from the work on Philosophy of Action and Artificial Intelligence concerning the notions of intentional action and formal models of agents’ mental states. As such, the meaning (and properties) of notions such as belief, desire, intention, etc. as studied in these disciplines are of central importance to the area. Particularly, we will concentrate in our work on agent programming languages influenced by the so-called BDI paradigm of agency, in which an agent is described by her beliefs, desires, intentions. While the engineering of such languages has been much discussed, the connections between the theoretical work on Philosophy and Artificial Intelligence and its implementations in programming languages are not so clearly understood yet. This distance between theory and practice has been acknowledged in the literature for agent programming languages and is commonly known as the “semantic gap”. Many authors have attempted to tackle this problem for different programming languages, as for the case of AgentSpeak (BORDINI; MOREIRA, 2004), GOAL (HINDRIKS; VAN DER HOEK, 2008), etc. In fact, Rao (1996, p. 44) states that “[t]he holy grail of BDI agent research is to show such a one-to-one correspondence with a reasonably useful and expressive language.” One crucial limitation in the previous attempts to connect agent programming languages and BDI logics, in our opinion, is that the connection is mainly established at the static level, i.e. they show how a given program state can be interpreted as a BDI mental state. It is not clear in these attempts, however, how the execution of the program may be understood as changes in the mental state of the agent. The reason for this, in our opinion, is that the formalisms employed to construct BDI logics are usually static, i.e. cannot represent actions and change, or can only represent ontic change, not mental change. The act of revising one’s beliefs or adopting a given desire are mental actions (or internal actions) and, as such, different from performing an action over the environment (an ontic or external action). This difference is well recognized in the literature on the semantics of agent programming languages (D’INVERNO et al., 1998; BORDINI; HUBNER; WOOLDRIDGE, 2007; MENEGUZZI; LUCK, 2009), but this difference is lost when translating their semantics into a BDI logic. We believe the main reason for that is a lack of expressibility in the formalisms used to model BDI reasoning. Dynamic Epistemic Logic, or DEL, is a family of dynamic modal logics to study information change and the dynamics of mental attitudes inspired by the Dutch School on the “dynamic turn” in Logic (VAN BENTHEM, 1996). This formalism stems from various approaches in the study of belief change and differs from previous studies, such as AGM Belief Revision, by shifting from extra-logical characterization of changes in the agents attitudes to their integration within the representation language. In the context of Dynamic Epistemic Logic, the Dynamic Preference Logic of Girard (2008) seems like an ideal candidate, having already been used to study diverse mental attitudes, such as Obligations (VAN BENTHEM; GROSSI; LIU, 2014), Beliefs (GIRARD; ROTT, 2014), Preferences (GIRARD, 2008), etc. We believe Dynamic Preference Logic to be the ideal semantic framework to construct a formal theory of BDI reasoning which can be used to specify an agent programming language semantics. The reason for that is that inside this logic we can faithfully represent the static state of a agent program, i.e. the agent’s mental state, as well as the changes in the state of the agent program by means of the agent’s reasoning, i.e. by means of her mental actions. As such, in this work we go further in closing the semantic gap between agent programs and agency theories and explore not only the static connections between program states and possible worlds models, but also how the program execution of a language based on common operations - such as addition/removal of information in the already mentioned bases - may be understood as semantic transformations in the models, as studied in Dynamic Logics. With this, we provide a set of operations for the implementation of agent programming languages which are semantically safe and we connect an agent program execution with the dynamic properties in the formal theory. Lastly, by these connections, we provide a framework to study the dynamics of different mental attitudes, such as beliefs, goals and intentions, and how to reproduce the desirable properties proposed in theories of Agency in a programming language semantics.

Page generated in 0.0558 seconds