• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 17
  • 17
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-wavelength studies of the high mass X-ray binaries X persei (4U0352+309) and OAO1657-415

Roche, Paul January 1993 (has links)
No description available.
2

What's happening around Herbig Ae stars? : investigating circumstellar activity in young intermediate mass stars with optical and near-infrared spectroscopy /

Rodgers, Bernadette, January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (p. 132-136).
3

The effect of age and metallicity on Be circumstellar disk formation /

Wisniewski, John Patrick. January 2005 (has links)
Thesis (Ph.D.)--University of Toledo, 2005. / Typescript. "A dissertation [submitted] as partial fulfillment of the requirements of the Doctor of Philosophy degree in Physics." Bibliography: leaves 328-333.
4

Non-radial pulsations in be stars. Preparation of the corot space mission

Gutiérrez Soto, Juan 15 December 2006 (has links)
The general objective of the present work is to contribute to the knowledge of the physics of Be Stars. In particular, we are interested in studying and characterizing their pulsational properties. A very suitable tool to reach this goal is the study and analysis of photometric time series with the maximum time baseline, density and photometric accuracy.The space mission COROT scheduled to be launched in December 2006, will provide ultra high precision, relative stellar photometry for very long continuous observing runs. Up to ten stars will be observed in the seismology fields with a photometric accuracy of a few 10-4 and color information during 150 days.The observations of Be stars with COROT will provide photometric time series with unprecedented quality. Their analysis will allow us to qualitatively improve our knowledge and understanding of the pulsational characteristics of Be stars. In consequence, we have started a research project aimed at observing Be stars both in the seismology and exoplanet fields of COROT.In this thesis we present the first step of this project, which is the preparation and study of the sample of Be stars that will be observed by COROT. We have performed photometric analysis of all Be stars located in the seismology fields (Chap. 2). Special emphasis has been given to two stars (NW Ser and V1446 Aql) in which we have detected multiperiodic variability and these variations have been modeled in terms of stellar pulsations (Chap. 3). We have also performed an in-depth spectroscopic study of NW Ser and identified the non-radial pulsating modes taking into account the rotational effects (Chap. 4). A technique to search for faint Be stars based on CCD photometry has been developed and is presented in Chap. 5. We also present a list of faint Be stars located in the exoplanet fields of COROT detected with this technique and which we propose as targets for COROT. In addition, we have proven that our period-analysis techniques are suitable to detect multiperiodicity in large temporal baseline data. In particular, we have detected non-radial pulsations in some Be stars in the low-metallicity galaxy Small Magellanic Clouds (Chap. 6). The current theoretical models do not predict the presence of pulsational instabilities in such low-metallicity environment, and therefore, our results point towards the necessity of new and improved models.
5

Circumstellar Disks Around Rapidly Rotating Be-Type Stars

Touhami, Yamina 20 March 2012 (has links)
Be stars are rapidly rotating B-type stars that eject large amounts of material into a circumstellar disk. Evidence of the presence of a disk is found through hydrogen emission lines in their spectra, IR excess flux, and linear intrinsic polarization. In this dissertation, we report the first simultaneous interferometric and spectroscopic observations of circumstellar disks around 24 bright Be stars made using the techniques of long baseline interferometry and moderate resolution spectroscopy in the near infrared. The goal of the project is to characterize the fundamental geometrical and physical properties of the emitting regions that are responsible for the IR flux excesses detected in the K-band in our sample stars. This observational work has been conducted with both the Center for High Angular Resolution Astronomy (CHARA) Array at Mount Wilson Observatory, and the Mimir spectrograph at Lowell Observatory. The visibility measurements were interpreted with different geometrical and physical disk models in order to determine the spatial extension of the disk, the inclination angle, the position angle, and the density profile of the disk. We find that the spatial extension of the circumstellar disk in the K-band is only about a few stellar radii, and that the density structure of the disk is consistent with a radially decreasing function with a density exponent that ranges between 2.5 and 3.5. The resulting disk densities are in a good agreement with those derived from the Infrared Astronomical Satellite (IRAS) measurements, and the resulting disk geometries are consistent with previous polarimetric measurements. We find that the K-band sizes of the emitting regions in the disk are smaller by a factor of two than the Hα sizes, and we show that this is due to the lower opacity of the continuum in the disk. By combining recent measurements of the projected rotational velocities with the disk inclination angles derived from interferometry, we were able to estimate the actual equatorial linear rotational velocities of the Be stars in our sample. The obtained linear rotational velocities indicate that Be stars are rapid rotators with an equatorial velocity that is about 0.7 - 0.9 of their critical velocities.
6

Emission line stars in and beyond the Perseus Arm

Raddi, Roberto January 2013 (has links)
I present low-resolution (Dl 6 A° ) follow-up spectroscopy of 370 Ha emitters (12 . r . 17) identified with IPHAS, in a 100 deg2 wide section of the Galactic plane that is located between ` = (120 ; 140 ) and b = ( 1 ; +4 ). Classical Be stars are found to be the most numerous group of the observed targets ( 60%). Sixty-eight classical Be stars have also been observed at higher spectral resolution (Dl 2 4 A° ) and S/N ratio, which allows spectral typing to an estimated precision of 1 sub-type. Colour excesses were measured via spectral energy distribution fitting of flux-calibrated data. I took care to remove the circumstellar contribution to the measured colour excess, using an established scaling to the Ha equivalent widths. In doing so, this method of correction was re-evaluated and modified to better suit the data at hand. Spectroscopic parallaxes were measured constraining the luminosity class via estimates of distances to main sequence A/F stars, which are found within a few arcminutes of each classical Be star on the sky. In order to probe the structure of the outer Galactic disc, I studied the spatial distribution of 63 out of 248 classical Be stars identified. Their cumulative distribution function with respect to the distance is statistically compatible both with a smooth exponential density profile and with a simple spiral arms representation. The distribution of reddenings of classical Be stars is compared with estimates of the total Galactic reddening along their sightlines. It is expected that the measured reddenings match the integrated Galactic values, for distant stars located outside the Galactic dust layer, or they are smaller than the asymptotic values if the stars are less distant. The outcome meets expectations, and lends support to the conclusion that the measured reddenings are determined to a precision of 10%. The sample of 248 objects doubles the number of known classical Be stars in this part of the Galactic plane. Unlike the pre-existing bright sample, the new objects are seen at large distances, between 2 – 8 kpc with typical E(B V) 0:9. Only four stars are members of known clusters. Ten classical Be stars are proposed to be well beyond the putative Outer Arm, at distances larger than 8 kpc. The large sample of stars, which has been identified here, is the result of a successful selection and analysis of classical Be stars that is offered for more exploitation in future. The proposition is that GAIA observations will use the present sample of classical Be stars as a new tracer of the Galactic disc.
7

Using Advanced PSF Subtraction Techniques on Archival Data of Herbig Ae/Be Stars to Search for New Candidate Companions

Safsten, Emily Diane 01 July 2017 (has links)
Herbig Ae/Be (HAeBe) stars are intermediate mass (2-10 solar mass) pre-main sequence stars with circumstellar disks. Observing planets within these young disks would greatly aid in understanding planet formation processes and timescales particularly around massive stars. So far, only one planet, HD 100546 b, has been confirmed to orbit a HAeBe star. With over 250 HAeBe stars known, and several observed to have disks with structures thought to be related to planet formation, it seems likely that there are as yet undiscovered planetary companions within the circumstellar disks of some of these young stars. Direct detection of a low-luminosity companion near a star requires high contrast imaging, often with the use of a coronagraph, and the subtraction of the central star's point spread function (PSF). Several processing algorithms have been developed in recent years to improve PSF subtraction and enhance the signal-to-noise of sources close to the star. However, many HAeBe stars were observed via direct imaging before these algorithms came out. We used the PSF subtraction program PynPoint to reprocess archival images of HAeBe stars from the Advanced Camera for Surveys on the Hubble Space Telescope to increase the likelihood of detecting a planet in their disks. We believe we have recovered the known planet around HD 100546 and possibly its candidate second companion. We also detect new candidate sources in the vicinities of HD 141569 and HD 163296. Further observations are needed to confirm the reality of these detections and also establish their association with the host stars.
8

Photometric And Spectral Analysis Of The Optical Companion To Sax J2103.5+4545

Ozbilgen, Sinem 01 December 2008 (has links) (PDF)
In this study spectral and photometric data of the SAX J2103.5+4545 Be/X-ray system are given. The spectral data were taken from June 2007 to September 2008 with the 1.5 m Russian-Turkish telescope, whereas the photometric data were obtained using ROTSE-IIId archive from June 2004 to November 2008. The photometric data up to April 2007 shows that the system was in quiescence in the optical region. But, in the 23rd of April 2007, the system&#039 / s luminosity underwent a large increase, which is in agreement with X-ray data. This increase was approximately 1 mag. Also, the Halpha line was displaying an emission with increased equivalent width proportional to the outburst. Afterwards, the Halpha line profile changed from a double peaked emission into a single peaked absorption, which is in agreement with the system&#039 / s structure. This means that the Be star threw away its disc and its light curve fell back to its old luminosity.
9

Probing the circumstellar disks of classical Be stars with optical and near-infrared spectroscopy /

Hesselbach, Erica N. January 2009 (has links)
Dissertation (Ph.D.)--University of Toledo, 2009. / Typescript. "Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Physics ." Bibliography: leaves 71-74.
10

Une vie interférométrique des disques d'étoiles chaudes / An interferometric view of hot stars disks

Moser Faes, Daniel 06 October 2015 (has links)
L’interférométrie optique/IR à longue base a été récemment mise en place comme une technique capable de résoudre spatialement les étoiles et leurs environnements circumstellaires au niveau de la milliseconde d'angle (mas). Cette haute résolution ouvre toute une nouvelle fenêtre pour l'étude des systèmes astrophysiques, fournissant des informations inaccessibles par d'autres techniques. Les disques astrophysiques sont observés dans une grande variété de systèmes, de galaxies jusqu'aux anneaux planétaires, partageant communément des processus physiques similaires. Deux disques particuliers sont étudiés dans la thèse: (i) les étoiles B He-riches qui présente des champs magnétiques de l'ordre de kG et que confine leurs vents dans des structures appelées magnétosphères; et (ii) les étoiles Be, rotateurs rapides qui présentent des disques circumstellaires épisodiques. Cette étude utilise la technique interférométrique pour étudier à la fois la photosphère et l'environnement circumstellaire de ces étoiles. L'objectif est de combiner l'interférométrie avec d'autres techniques d'observation (telles que la spectroscopie et la polarimétrie) pour effectuer une description physique complète et bien contraindre ces systèmes. Cette description est acquise par l'interprétation de l'ensemble des observations par des modèles de transfert radiatif. / Optical long baseline interferometry was recently established as a technique capable of resolving stars and their circumstellar environments at the milliarcsecond (mas) resolution level. This high-resolution opens an entire new window to the study of astrophysical systems, providing information inaccessible by other techniques. Astrophysical disks are observed in a wide variety of systems, from galaxies up to planetary rings, commonly sharing similar physical processes. Two particular disk like systems are studied in the thesis: (i) B He-rich stars that exhibits magnetic fields in order of kG and that trap their winds in structures called magnetospheres; and (ii) Be stars, fast rotating stars that create circumstellar viscous disks. This study uses the interferometric technique to investigate both the photosphere proper and the circumstellar environment of these stars. The objective is to combine interferometry with other observational techniques (such as spectroscopy and polarimetry) to perform a complete and well-constrained physical description of these systems. This description is accompanied by radiative transfer models.

Page generated in 0.0423 seconds