• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating Regional Patterns of Shoreline Change

Lazarus, Eli January 2009 (has links)
<p>My doctoral work stems from an original motivation to understand more closely why some areas of sandy coastlines erode and others accrete<—>an intriguing fundamental question and one of societal relevance wherever human coastal infrastructure exists. What are the physical processes driving shoreline change, and over what spatial and temporal scales are they manifest? If forces driving the littoral system change, how does the shoreline respond? Can we attribute observed patterns of shoreline change to a particular process?</p><p>Recent novel numerical shoreline-evolution modeling demonstrated that wave-driven gradients in alongshore sediment transport could produce self-organized, emergent features on spatial scales from sand waves to large-scale capes [<italic>Ashton et al.</italic>, 2001], introducing a new theoretical perspective to the cross-shore-oriented considerations of the coastal scientific community. The unexpected model results inspired fresh hypotheses about shoreline pattern formation and the forcing mechanisms behind them.</p><p>One overarching hypothesis was that under regimes of high- and low-angle deep-water incident waves, alongshore shoreline perturbations grow or diffuse away, respectively. To test the hypothesis we looked for a correlation between shoreline curvature (showing perturbations to a nearly straight coastline) and shoreline change in observed measurements. High-resolution topographic lidar surveys of the North Carolina Outer Banks from 1996<–>2006 allowed robust, quantitative comparisons between shoreline surveys spanning tens of kms. In Chapter 1 [<italic>Lazarus and Murray</italic>, 2007] we report that over the last decade, at multi-km scales along the barrier islands, convex-seaward promontories tended to erode and concave-seaward embayments accrete<—>a pattern of diffusion consistent with the smoothing effects of alongshore-transport gradients driven by a low-angle wave climate. Why then, after a decade or more of smoothing, do plan-view bumps in the shoreline still persist? In Chapter 2 [<italic>Lazarus et al.</italic>, in review] we compile evidence suggesting that (a) a framework of paleochannels may control the areas of persistent multi-km-scale shoreline convexity that (b) in turn drive decadal-term transient changes in shoreline morphology by (c) affecting gradients in wave-driven alongshore sediment transport.</p><p>In Chapter 3, a third investigation of large-scale coastal behavior, we explore an existing premise that shoreline change on a sandy coast is a self-affine signal wherein patterns of changes are scale-invariant, perhaps suggesting that a single process operates across the scales. Applying wavelet analysis<—>a mathematical technique involving scaled filter transforms<—>we confirm that a power law fits the average variance of shoreline change at alongshore scales spanning approximately three orders of magnitude (5<–>5000 m). The power law itself does not necessarily indicate a single dominant driver; beach changes across those scales likely result from a variety of cross-shore and alongshore hydrodynamic processes. A paired modeling experiment supports the conclusion that the power relationship is not an obvious function of wave-driven alongshore sediment transport alone.</p><p>Our tests of theory against field observations are middle steps in pattern-to-process attribution; they fit into a larger body of coastal morphodynamic research that in time may enable shoreline-change prediction. Present hydrodynamic models are still too limited in spatial and temporal scope to accommodate the extended scales at which large morphological changes occur, but more integrated quantitative models linking bathymetry, wave fields, and geologic substrate are underway and will set the next course of questions for the discipline.</p> / Dissertation
2

Morphological Changes Associated with Tropical Storm Debby in the Vicinity of Two Tidal Inlets, John's Pass and Blind Pass, West-Central Florida

Brownell, Andrew 01 January 2013 (has links)
Tropical Storm Debby affected the Gulf coast of Florida in late June, 2012. The storm's southerly approach temporarily reversed the annual net southward longshore sediment transport. The energetic conditions associated with Tropical Storm Debby can be seen in the wind, wave and tidal measurements taken from both onshore and offshore weather stations around the dual tidal inlets system of John's Pass and Blind Pass, approximately 25 kilometers north of the mouth of Tampa Bay. The energetic and persistent southerly forcing, in addition to higher storm induced water levels and wave heights, resulted in atypical beach erosion and sediment deposition on the ebb tidal deltas of the two inlets and the surrounding beaches. The John's Pass ebb delta gained 60,000 cubic meters of sediment and the Blind Pass ebb delta gained 9,000 cubic meters as a result of the storm. Shoreline position, beach profile and offshore bathymetric surveys conducted before and after Tropical Storm Debby illustrate the changes in the coastal morphology such as the development of an offshore bar south of Blind Pass and erosion of the dry beach north and south of John's Pass. The Coastal Modeling System (CMS) was used to simulate wave and tide-driven current fields during the passage of the storm. The modeled wave field qualitatively illustrated the shadowing effect of the Tampa Bay ebb delta in reducing the southerly approaching storm wave energy arriving at the study area during the storm. The tidal flow patterns through the inlets and over the ebb tidal deltas were considerably different during the storm, as compared to normal tidal cycles.
3

Morphodynamics of Egmont Key at the Mouth of Tampa Bay: West-Central Florida

Tyler, Zachary James 13 April 2016 (has links)
Egmont Key, located at the mouth of Tampa Bay, is part of a dynamic system with many interrelated natural and anthropogenic factors influencing its morphodynamics. This study started in August 2012. During the 3-year period until August 2015, 28 beach profile transects were established and surveyed 10 times. Seventeen historical aerial images from 1942 to 2013 were geo-rectified and analyzed. Three hundred and fourteen sediment samples were procured from the navigation channel dredge area and the beach nourishment area and analyzed for grain size. A numerical wave model was established to simulate the nearshore wave field. The overall goals of this study are to understand the complex morphodynamics of Egmont Key and to evaluate the shore-protection efforts. The overall area of the Egmont Key has reduced 52% from 2.1 km2 in 1942 to 1.o km2 in 2002. The area loss was mostly caused by beach erosion along the Gulf-facing beach. The island-area reduction from 1942 to 2002 was largely linear. Two periods of accelerated area loss from 1978-1984 and 1999-2002 can be related to dredging of the Egmont Channel and the disposal of dredged materials along the channel. Concerning the relatively high mud content in the borrow area for the 2014 nourishment, a large amount of the fine sediment was lost at a temporal scale of hours to days during the dredging and beach nourishment construction processes. Some of the mud was deposited outside the surf zone at water depths of 2 m or greater. This mud became eroded naturally by energetic conditions at a temporal scale of months. Beach erosion and accretion along the Gulf-facing beach can be related qualitatively to tidal flow patterns. Numerical wave modeling shows that the transverse bars offshore Egmont Key have a moderate influence on the wave field, leading to slightly different wave heights along the shoreline. However, there is no clear relationship between the nearshore wave conditions and the erosion/accretion patterns. The severe shoreline erosion has exposed various fort structures at the shoreline and in the nearshore zone. These structures function as detached breakwaters or groins and have localized influence on the beach state.

Page generated in 0.043 seconds