• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 10
  • 10
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Beach evolution and environmental forcing factors : Jersey, Channel Islands

Gunton, Alan Kenneth January 1996 (has links)
No description available.
2

Investigating the ecological implications of wrack removal on South Australian sandy beaches

Duong, Huynh Lien Stephanie, stephanie.duong@flinders.edu.au January 2008 (has links)
Accumulations of seagrass, macroalgae and other matter, collectively known as wrack, commonly occur on many sandy beaches, and can play an important role in coastal and nearshore ecosystems. Despite this, wrack removal from sandy beaches is a widespread and increasingly common practice globally, and there is little information regarding the ecological effects of such wrack removal on sandy beaches. The aim of this thesis was to establish the ecological importance of wrack in South Australian (SA) sandy-beach ecosystems. As a first step in furthering our understanding of the effects of wrack removal, I aimed to assess the importance of wrack, independent of the effects of wrack removal. The second over-riding aim of this thesis was to assess the ecological effects of wrack removal on aspects of these systems. To date, the methods used for quantifying the size of wrack deposits on sandy beaches have had limited use due to the time and expertise required to conduct thorough sampling. In Chapter 2, I thus tested the accuracy of a rapid “photopoint” method to visually estimate percentage wrack cover as well as provide an archived record. Comparisons of results obtained from conventional transects with those from photopoints indicated that the photopoint technique can be used to rapidly and accurately estimate % wrack cover on sandy beaches. The photopoint method has a wide range of potential applications and represents a valuable advance in the field. Currently our knowledge of the amounts and types of wrack on SA shores is limited, despite these accumulations being a feature of some SA beaches. Wrack deposits in three biogeographical regions of SA were thus repeatedly surveyed to assess spatial (between and within regions) and temporal (seasonal and inter-annual) variation (Chapter 2). Both wrack cover and the composition of wrack deposits varied spatially and temporally. Wrack deposits contained a diverse array of seagrass, algal, other biotic materials and anthropogenic debris. The South East region of SA had distinctly-different wrack deposits compared to the Metropolitan and Fleurieu Peninsula regions; in general, the cover of wrack was higher, and the diversity and biomass of kelps, red algae and green algae was higher in this region compared to the other two regions. South Australian wrack deposits are thus dynamic and complex. The amount of wrack deposited and retained on a beach may be affected by the beach morphology but, to date, few studies have investigated this link. I assessed wrack cover on beaches with a range of morphodynamic types and found that beaches that were more dissipative in nature had a greater cover of wrack than beaches of the reflective type. I also examined whether wrack deposits affected the sediment characteristics of underlying and nearby sediments. Wrack deposits had little measurable effect on underlying sediments and did not affect particle-size distribution or organic-matter content. There was, however, a trend for beaches in the South East region of SA to have higher organic matter content in their sediments, and these beaches also have higher wrack cover and higher proportions of algae in their deposits. There was also a trend for beaches with higher wrack cover to have less compacted sediments, although this trend was not consistent. Overnight pit-fall trapping surveys of the macrofauna on four SA sandy beaches indicated that local macrofaunal communities were diverse (representing 72 species from 19 Orders in total), abundant, and variable in both time and space. The macrofauna encountered were mostly terrestrial taxa with only 2 truly marine species, and spanned multiple trophic levels, concurring with the results of previous studies. Macrofaunal abundances were higher where associated with wrack than in bare sand, and macrofaunal communities differed between the driftline of wrack and wrack patches away from the driftline. Within the driftline itself, there were few differences between bare sand and wrack-covered areas, suggesting that the entire driftline area is important as a habitat and food resource. Thus, wrack deposits provide an important habitat and food source for macrofauna, and the driftline provides an area of beach with concentrated resources, which in turn concentrates a distinct macrofaunal community. Wrack deposition on sandy beaches varies spatially and is affected by morphological features on the beach-face such as cusps. In Chapter 5, I thus tested a series of hypotheses regarding the differences in wrack deposits, sediments and macrofaunal communities between cusp bays and horns. Bays had greater cover and larger pieces of wrack than horns. Sediment organic-matter content was greater on horns than in bays but mean particle size did not differ consistently between bays and horns. Macrofaunal diversity was higher in bays and this pattern was probably driven by differences in the cover of wrack between bays and horns. Cusp morphology thus influences the distribution of wrack on the beach-face, which in turn influences the distribution of macrofauna. Studies of sandy beaches with cusps should therefore be explicitly designed to sample cusp features and their associated wrack deposits. Chapter 6 assesses the incorporation of wrack into beach and nearshore ecosystems via two pathways: decomposition and incorporation into trophic webs. I assessed the decomposition of algal and seagrass wrack using litterbag experiments and found that after a very rapid initial loss of mass, likely due to cell lysis and leaching, the rate of decomposition of wrack was much slower. Most release of nutrients from organic matter decay thus appears to occur in the first few days after deposition and the processes affecting the rate and nature of wrack decomposition vary among taxa (i.e. algal versus seagrass and among species). Stable isotopes of C and N were used to assess whether beach macrofauna or nearshore macro-invertebrates and fish might rely on wrack as a source of nutrition. I found that seagrasses did not provide a food source for any consumers but algae, particularly brown algae including kelps, appeared to be potential sources of nutrition for beach and nearshore consumers. The incorporation of wrack into beach and nearshore ecosystems may thus occur primarily through consumption of algal wrack by herbivores such as amphipods and dipterans, with predation on them being important pathways for the transfer of nutrients and energy into higher trophic levels. The amount of wrack in the surf zone did not affect the abundance and species richness of fish and invertebrates netted there. The aim of Chapter 7 was to determine the effects of wrack removal on sandy beach macrofaunal communities. In the first study the effects of large-scale commercial harvest of wrack on the macrofaunal communities at Kingston were assessed. The macrofaunal communities present in the ‘Natural’ area of Kingston beach were far more diverse and abundant, and included different species, compared to the ‘Cleared’ area at Kingston. In the second part of Chapter 7, I experimentally removed wrack from the driftline of beaches to assess short-term effects on macrofaunal communities. The experimental treatment did not appear to have any measurable effects on the macrofaunal communities. I also analysed material that was removed from the beach in the raking experiments and found that a large proportion of the material (e.g. 81% of the DW) was sand. I recommend that future studies into the effects of wrack removal use large cleared areas of beach, attempt to use the same wrack removal methods and/or machinery used locally, and assess the macrofaunal communities repeatedly and over longer times following wrack removal activities. In Chapter 8, I attempt to assess the effects of removal of wrack for beach ‘cleaning’ or commercial ‘harvest’ of wrack by comparing key indicators from Chapters 2 to 7. Implications and recommendations for the management of wrack are discussed, including with regard to the techniques used in this thesis and their applicability in managing wrack deposits. I attempt to identify the shortcomings of this research as well as directions for further research. Thus I have demonstrated that wrack in SA provides an important link between offshore habitat and nearshore, beach and terrestrial habitats via the transfer of organic matter and nutrients. Wrack interacts with beach morphology and sediments, provides habitat for macrofauna, remineralises nutrients through its decomposition, and provides the basis of a complex trophic web. I conclude that wrack is a key component in beach ecosystems.
3

Morfodinâmica e eventos de sobrelavagem: praias da baía de Santos, SP / Morphodynamics and overwash process: Santos bay beaches, SP

Luiza Paschoal Stein 04 April 2018 (has links)
As praias urbanizadas são ambientes complexos devido à interação da ocupação antropogênica e dos processos costeiros. A ocupação costeira vem se caracterizando por alteração e deterioração da paisagem, processo mais intenso em grandes cidades litorâneas, onde casas e edifícios são construídos nas proximidades imediatas da orla. O presente trabalho analisa a morfodinâmica e processo de sobrelavagem das praias de Santos e Itararé, duas praias urbanizadas com a presença de obras na orla. Foram realizados levantamentos topográficos nas praias e modelagem de ondas (Delft 3D - Wave) para toda a baía durante os anos de 2015 e 2016. Cenários de sobrelevaçãoonda e nível do mar foram estipulando para o cálculo da sobrelevaçãototal e assim conhecer as condições que levam a sobrelavagem. A baía de Santos encontra-se aberta para sul, expondo a linha de costa para a ação de frentes frias. A variabilidade do clima de ondas, derivada das mudanças das suas condições meteorológicas formadoras, pode alterar a morfologia da praia. Em Santos e São Vicente as ondas de sul e sudeste apresentam maiores alturas de onda e são mais frequentes no outono e inverno quando temos mais frentes frias na região. Os resultados indicam relação entre a incidência de ondas com maior força de onda (W/m), associadas a frentes frias, em trechos mais inclinados das praias com perda de volume. A variedade de incidência das ondas ao longo da praia estudada mostra um decréscimo na força de onda, sendo maior em Itararé e caindo em direção a Ponta da Praia, com a presença de picos altos na Ponta da Praia. Justificando porque este trecho sofre mais variação de volume e perda de sedimento fato que pode estar associado a dragagem do canal do porto de Santos. Em ambos os trechos com maior declividade e menor faixa de areia apresentaram maior sensibilidade à ação das ondas e também maior chance de sofrer sobrelavagem, de todo o arco praial da baía de Santos a porção leste de Santos se mostrou a mais propícia a sofrer inundação. / Urbanized beaches are more complex environments due to the interaction of anthropogenic occupation and coastal processes. Coastal occupation has been characterized by alteration and deterioration of the landscape, being more intense in large coastal cities, where houses and buildings are built in the immediate vicinity of the beach border being subject to potentially high risk of erosion. The present work analyzed the morphodynamics and overwashing of the beaches of Santos and Itararé, two urbanized beaches with the presence of anthropogenic constructions in the beach border. Topographic surveys on both beaches and wave modeling (Delft 3D - Wave) were carried out for the entire basin during the years of 2015 and 2016. Wave run-up and sea level scenarios were stipulated for the calculation of the total water level and so determined conditions that lead to overwashing. The bay of Santos is open to the South, exposing the coast line for the action of cold fronts. The variability of the wave climate, derived from the changes of its formative meteorological conditions, can alter the morphology of the beach. In Santos and São Vicente, South and Southeast waves have higher wave height and are more frequent in autumn and winter when we have more cold fronts in the region. The results indicate the direct relationship between the incidence of waves with higher wave force (W/m), associated with cold fronts, with loss of volume along the beaches. The variety of wave incidence along the studied beach shows a decrease in wave force, being higher in Itararé and falling towards Ponta da Praia, in the area protected by the rocky promontory. However in Ponta da Praia we see high values of wave force, justifying why this stretch suffers more volume variation and loss of sediment, that we belive happends because of Port Channel. In both stretches with greater slope and lower sand range showed greater sensitivity to the action of the waves and also greater chance of overwash, of all the praial arc of the Santos bay, the Eastern portion of Santos was the most propitious to suffer flooding.
4

Morfodinâmica e eventos de sobrelavagem: praias da baía de Santos, SP / Morphodynamics and overwash process: Santos bay beaches, SP

Stein, Luiza Paschoal 04 April 2018 (has links)
As praias urbanizadas são ambientes complexos devido à interação da ocupação antropogênica e dos processos costeiros. A ocupação costeira vem se caracterizando por alteração e deterioração da paisagem, processo mais intenso em grandes cidades litorâneas, onde casas e edifícios são construídos nas proximidades imediatas da orla. O presente trabalho analisa a morfodinâmica e processo de sobrelavagem das praias de Santos e Itararé, duas praias urbanizadas com a presença de obras na orla. Foram realizados levantamentos topográficos nas praias e modelagem de ondas (Delft 3D - Wave) para toda a baía durante os anos de 2015 e 2016. Cenários de sobrelevaçãoonda e nível do mar foram estipulando para o cálculo da sobrelevaçãototal e assim conhecer as condições que levam a sobrelavagem. A baía de Santos encontra-se aberta para sul, expondo a linha de costa para a ação de frentes frias. A variabilidade do clima de ondas, derivada das mudanças das suas condições meteorológicas formadoras, pode alterar a morfologia da praia. Em Santos e São Vicente as ondas de sul e sudeste apresentam maiores alturas de onda e são mais frequentes no outono e inverno quando temos mais frentes frias na região. Os resultados indicam relação entre a incidência de ondas com maior força de onda (W/m), associadas a frentes frias, em trechos mais inclinados das praias com perda de volume. A variedade de incidência das ondas ao longo da praia estudada mostra um decréscimo na força de onda, sendo maior em Itararé e caindo em direção a Ponta da Praia, com a presença de picos altos na Ponta da Praia. Justificando porque este trecho sofre mais variação de volume e perda de sedimento fato que pode estar associado a dragagem do canal do porto de Santos. Em ambos os trechos com maior declividade e menor faixa de areia apresentaram maior sensibilidade à ação das ondas e também maior chance de sofrer sobrelavagem, de todo o arco praial da baía de Santos a porção leste de Santos se mostrou a mais propícia a sofrer inundação. / Urbanized beaches are more complex environments due to the interaction of anthropogenic occupation and coastal processes. Coastal occupation has been characterized by alteration and deterioration of the landscape, being more intense in large coastal cities, where houses and buildings are built in the immediate vicinity of the beach border being subject to potentially high risk of erosion. The present work analyzed the morphodynamics and overwashing of the beaches of Santos and Itararé, two urbanized beaches with the presence of anthropogenic constructions in the beach border. Topographic surveys on both beaches and wave modeling (Delft 3D - Wave) were carried out for the entire basin during the years of 2015 and 2016. Wave run-up and sea level scenarios were stipulated for the calculation of the total water level and so determined conditions that lead to overwashing. The bay of Santos is open to the South, exposing the coast line for the action of cold fronts. The variability of the wave climate, derived from the changes of its formative meteorological conditions, can alter the morphology of the beach. In Santos and São Vicente, South and Southeast waves have higher wave height and are more frequent in autumn and winter when we have more cold fronts in the region. The results indicate the direct relationship between the incidence of waves with higher wave force (W/m), associated with cold fronts, with loss of volume along the beaches. The variety of wave incidence along the studied beach shows a decrease in wave force, being higher in Itararé and falling towards Ponta da Praia, in the area protected by the rocky promontory. However in Ponta da Praia we see high values of wave force, justifying why this stretch suffers more volume variation and loss of sediment, that we belive happends because of Port Channel. In both stretches with greater slope and lower sand range showed greater sensitivity to the action of the waves and also greater chance of overwash, of all the praial arc of the Santos bay, the Eastern portion of Santos was the most propitious to suffer flooding.
5

Coastal impacts in the lee of a wave energy site : waves, beach morphology and water-users (Wave Hub, Cornwall, UK)

Stokes, Christopher Hugo January 2015 (has links)
The Wave Hub facility in Cornwall (South West UK) is a marine renewables test site, predominantly designed for the purpose of trialling wave energy converters prior to commercialisation. Beach water-users such as bathers and surfers are of economic importance to tourism in Cornwall, and during theWave Hub consultation there were concerns among stakeholders that wave energy extraction would reduce the height and quality of coastal waves for sur ng, as well as a ecting sediment transport and beach morphology. This thesis investigates the interaction between wave conditions, beach morphology, and beach water-users, and proposes how a wave climate altered by wave energy extraction is likely to alter these interactions. A multidisciplinary research approach is adopted, involving the collection of qualitative and quantitative social data, the collection of over 5 years of physical wave and beach morphology data, and predictive modelling of the e ects of an attenuated wave climate. Quantitative, structured interview data from 403 water-users, collected at two beaches (Perranporth and Porthtowan) in the lee of Wave Hub, indicate that the population of water-users in the area is predominantly made up of surfers (53%), but bodyboarding and swimming/bathing are also popular activities (29% and 11%, respectively). In-depth semi-structured interviews reveal that water-user perceptions of wave energy extraction and its potential coastal impacts are constructed using intuitive risk perceptions, rather than technical understanding. These risk perceptions are constructed through a weighing of their perception of wave energy devices ('technology') and their perception of the coastal environment ('nature'). To investigate how waves are perceived, nearshore wave buoy measurements collected in 14 m water depth and transformed to breaking height, are compared to concurrent visual observations of mean breaker height and period. On average water-users underestimated signi cant wave height and period by 48% and 17%, respectively. Accounting for variations in wave perception, the wave preferences of di erent water-user groups are determined. Water-users are found to share a common preference towards wave v periods of 9 - 20 s, but di erent water-user groups are found to have di erent ranges of preferred wave height, which is found to govern whether wave energy extraction will decrease or increase the occurrence of preferred waves. Previous research indicates that three-dimensional (3D) beach morphology with crescentic bar and rip features is the primary controller of surf-zone hazard, and also strongly in uences the quality of sur ng waves at the coast. A dataset of 5.5 years of quasi-weekly bar measurements, and quasi-monthly intertidal surveys from Perranporth beach is used to quantify seasonal to inter-annual changes in threedimensionality. Integrated, cumulative uctuations in wave steepness, wave power, and relative tide range that occur over seasonal time scales are shown to be well correlated to seasonal uctuations in beach three-dimensionality. 3D morphology is well related to a disequilibrium term that predicts increases or decreases in threedimensionality by examining the di erence between instantaneous wave conditions and a temporally varying equilibrium condition, based on a weighted average of antecedent waves. This indicates that periods of wave regime change between erosive winter conditions with high steepness waves and accretive summer conditions with low steepness waves are related to the growth of 3D features, and vice versa, while extended periods with similar wave conditions drive the beach towards equilibrium. Using a range of realistic and extreme coastal wave height attenuation scenarios determined from previous Wave Hub modelling studies, it is predicted that none of the scenarios will have a universally positive or negative e ect on the occurrence of wave conditions preferred by water-users. When used to predict beach threedimensionality at Perranporth beach, the attenuated wave climates are found to reduce the variability in three-dimensionality. Even an extreme and unrealistic level of wave energy extraction (100% energy capture) was shown to have an insigni cant e ect on the occurrence of preferred waves, and only under an extraction scenario where the impact was not varied with wave frequency did this level of attenuation have a signi cant e ect on the predicted beach three-dimensionality. The inshore wave attenuation from Wave Hub is therefore likely to have an insigni cant e ect on wave conditions and beach morphology of relevance to beach water-users. A number of observations and recommendations are discussed for the development of a sound and robust methodological approach, which can be used to investigate the e ects of wave energy extraction on beach water-users at future wave farm sites.
6

Field observations of wave induced coastal cliff erosion, Cornwall, UK

Earlie, Claire Siobhan January 2015 (has links)
Coastal cliff erosion is a widespread problem that threatens property and infrastructure along many of the world’s coastlines. The management of this risk calls for robust quantification of cliff erosion rates, which are often difficult to obtain along rocky coasts. Quantification of sea-cliff rates of retreat on annual to decadal time scales has typically been limited to rapidly eroding soft rock coastlines. Rates of erosion used for shoreline management in the UK are generally based on analysis of historic maps and aerial photographs which, in rocky coast environments, does not wholly capture the detail and timing at which the processes operate and the failures occur across the cliff face. The first stage of this study uses airborne LiDAR (Light Detection and Ranging) data at nine sites around a rocky coastline (Cornwall, UK) to gain a quantitative understanding of cliff erosion where average recession rates are relatively low (c. 0.1 m yr-1). It was found that three-dimensional volumetric changes on the cliff face and linear rates of retreat can be reliably calculated from consecutive digital elevation models (DEMs) several years apart. Rates of erosion ranged between 0.03–0.3 m yr-1. The spatial variability in recession rates was considered in terms of the relationship with the varying boundary conditions (rock mass characteristics, cliff geometries, beach morphology) and forcing parameters (wave climate and wave exposure). Recession rates were statistically correlated with significant wave height (Hs), rock mass characteristics (GSI) and the ratio between the two (GSI/Hs). Although the rates derived using airborne LiDAR are comparable to the longer term rates of retreat, the detail of erosion to the cliff-face provides additional insight into the processes occurring in slowly eroding environments, which are vital for understanding the failure of harder rock coastlines. In addition to this, the importance of the wave climate and rainfall needs further attention on a more localised scale. Monthly cliff face volume changes, at two particularly vulnerable sites (Porthleven and Godrevy, Cornwall, UK), were detected using a Terrestrial Laser Scanner (TLS). Using these volumes alongside information on beach profile, beach- cliff junction elevation changes and nearshore hydrodynamics have allowed an insight into how the cliffs respond to seasonal fluctuations in wave climate and beach morphology. Monthly variability in beach morphology between the two sites over a one-year survey period i  indicated the influence that beach slope and the elevation of the beach-cliff junction have on the frequency of inundation and the power of wave-cliff impacts. Failure mechanisms between the two sites ranged from rotational sliding of superficial material to quarrying and block removal over the entire cliff elevation, according to the extent of wave-cliff interaction. This particular survey period highlighted the sensitivity of cliff erosion to the variability in wave climate and beach morphology at two different locations in the south-west of the UK, where the vast majority (over 85% of the annual value) of cliff face erosion occurs during the winter when extreme storm waves prevail. Coastal cliff erosion from storm waves is observed worldwide but the processes are notoriously difficult to measure during extreme storm wave conditions when most erosion normally occurs, limiting our understanding of cliff processes. Over January-March 2014, during the largest Atlantic storms in at least 60 years with deep water significant wave heights of 6 – 8 m, cliff-top ground motions of a rocky cliff in the south-west of the UK (Porthleven, Cornwall) showed vertical ground displacements in excess of 50–100 μm; an order of magnitude larger than observations made previously. Repeat terrestrial laser scanner surveys, over a 2-week period encompassing the extreme storms, gave a cliff face volume loss 2 orders of magnitude larger than the long-term erosion rate. Cliff-top ground motions and erosion volumes were compared at two different locations, one a reflective beach with steeply shelving bathymetry (Porthleven, Cornwall) and the other an intermediate, low tide bar-rip beach with a wide coastal slope (Godrevy, Cornwall). Under similar wave conditions (6–8 m Hs and 15–20 s. Tp) the vertical ground motions were an order of magnitude greater at the cliffs fronted by steeply shelving bathymetry, where the breaking waves plunge right at the shoreline, with little prior dissipation, leading to large energetic runup impacting the cliff. These storm results imply that erosion of coastal cliffs exposed to extreme storm waves is highly episodic and that long-term rates of cliff erosion will depend on the frequency and severity of extreme storm wave impacts as well as the wave dissipation that occurs as a function of the nearshore bathymetry. Having recorded microseismic cliff-top motion on this scale for the first time and determined an effective method of monitoring the energetic wave impacts, this study emphasises how investigations of cliff behaviour during storms is not only obtainable, but paramount to understanding coastal evolution under extreme conditions.
7

Eco-sedimentological environments of an inter-tidal reef platform, Warraber Island, Torres Strait

Hart, Deirdre E., Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2003 (has links)
This thesis examines functional relationships between the morphologic, hydrodynamic, ecological and sedimentological characteristics of the Warraber reef platform, an inter-tidal reef island system, Central Torres Strait, Australia (10[degrees] 12??? S, 142 [degrees] 49??? E). Hydrodynamic and sediment-transport experiments were conducted on the reef flat using current meters, water level recorders and directional sediment traps. Results showed dominantly SE flows during the dry season and more variable NW to SE flows during the wet season. Topography and reefal water levels modulated the direction and strength of currents and the generation of wind-waves on the reef flat as well as the passage of waves over the reef rim. These hydrodynamic conditions are sufficient to induce significant transport of moderately fast to slow settling sediment (&gt-5.25 symbol psi) on the reef flat, though the platform as a whole is a relatively closed transport system. Carbonate production was estimated based on the key ecological variables of live assemblage distribution and cover. Overall, only 24% of the reef flat was occupied by carbonate-producing organisms. The average estimated carbonate-production rate for the reef was 1.6 kgm -2y-1 (0.07-4.37 kgm-2y-1). Production is dominated by coral (73%), with subordinate proportions contributed by coralline algae (19%). And molluscs, foraminifera and Halimeda (&lt4%) though actual reef-flat sediments did not reflect this potential. Instead, they were dominated by molluscs (35-55%), coralline algae (16-26%), coral (8-13%), Halimeda (7-8%) and foraminifera (5-10%). Differential rates of carbonate to sediment conversion meant the reef-platform sediments were more closely related to the cover of live organisms than to the contribution of carbonate production by each parent organism. The settling properties of the least altered particles of the five commonest constituents were measured and these provided the basis for an eco-sedimentological model of the reef-platform system. Modelled textures were compared to the actual textures, indicating the degree of textural alteration resulting from a combination of biological and physical processes, including sediment production, hydraulic sorting and mechanical breakdown. This analysis, integrated with the hydrodynamic, exposure and other data, was used to determine reef-platform surface-sediment sources, sinks and transport pathways. In using both the textual and constituent compositional properties of sediments, as well as information on local biological and physical processes, the model approach developed offers progress towards an integrative, interdisciplinary analysis of carbonate environments.
8

Modelling the dynamics of large scale shoreline sand waves

Van Der Berg, Niels 11 May 2012 (has links)
Shoreline sand waves are shoreline undulations with a length scale of several kilometres and a time scale of years to decades. They occur on many coasts, migrating in the direction of the dominant littoral drift and they introduce a variability into the shoreline position that can be greater than the long term coastal trend. The objective of this thesis is to provide more insight into the formation and dynamics of shoreline sand waves and, in particular, to explore the role of the so called high angle wave instability. Previous studies showed that the shoreline can be unstable under very oblique wave incidence. This high angle wave instability develops due to the feedback of shoreline changes and the associated changes in the bathymetry into the wave field. Wave propagation over this perturbed bathymetry leads to specific gradients in the alongshore transport that can cause the growth and migration of shoreline sand waves. In this thesis a quasi 2D non-linear morphodynamical model is improved and used to explore high angle wave instability and predict the formation and evolution of shoreline sand waves. The model assumes that the large scale and long term shoreline dynamics is controlled by the wave driven alongshore transport so that the details of the surfzone morphodynamics are not resolved. It overcomes some of the limitations of previous modelling studies on high angle wave instability. The wave field is computed with a simple wave module over the evolving bathymetry and an empirical formula is used to compute the alongshore transport. Cross-shore dynamics is described in a parameterized way and the model is capable of describing shoreline perturbations with a finite and dynamic cross-shore extent. The conditions under which shoreline instability can lead to the formation of shoreline sand waves are refined. Generic simulations with constant wave conditions and random initial perturbations show that the shoreline becomes unstable when the wave incidence angle at the depth of closure (i.e., the most offshore extent of the shoreline perturbations) is larger than a critical angle of about 42 degrees and shoreline sand waves develop in unison. The cross-shore dynamics plays an essential role because it determines the offshore extent of the shoreline perturbations. Using default model parameters, wave conditions and cross-shore profile, the sand waves develop with wavelengths between 2 and 5 km, the time scale for their formation is between 5 and 10 years and they migrate downdrift at about 0.5 km/yr. Simulations with a localized large scale perturbation trigger the formation of a downdrift sand wave train. Larger wave obliquity, higher waves and shorter wave periods strengthen the shoreline instability. A more realistic wave climate, with alternating high and low angle wave incidence reduces the potential for shoreline instability. A percentage of about 80% of high angle waves is required for sand wave formation. It is demonstrated that the range of low wave angles that can occur on a coast is larger than the range of high wave angles, and that the stabilizing effect produced by low angle waves (causing diffusion) is bigger than the destabilizing effect produced by high angle waves (causing growth and migration). Even if high angle waves are not dominant, the instability mechanism might still play a role in the persistence and downdrift migration of large scale shoreline perturbations. The model results are in qualitative agreement with observations of shoreline sand waves. The quasi 2D approach provides new insight into the physical mechanisms behind high angle wave instability and the occurrence of a minimal and optimal length scale for sand wave formation. Essential physical processes are wave energy dispersion due to wave refraction, wave energy focusing near the crest of a sand wave and the monotonic decrease of the gradients in alongshore transport for increasing length scales. / Les ones de sorra a la línia de costa són ondulacions de la línia de costa amb una escala espacial de kilòmetres i una escala temporal d’anys a dècades. Ocorren a moltes costes, migren en la direcció del transport litoral i introdueixen una variabilitat a la línia de costa que pot ser major que la seva tendència a llarg termini. L’objectiu d’aquesta tesi és estudiar amb més profunditat la formació i la dinàmica de les ones de sorra i, més concretament, explorar el rol de l’anomenada inestabilitat d’angle gran. Estudis previs van demostrar que la línia de costa pot ser inestable en cas d’onades obliqües que incideixen amb un angle gran. Aquesta inestabilitat d’angle gran es produeix degut a la retroalimentació entre els canvis a la línia de costa (i els que conseqüentment ocorren a la batimetria) i els canvis al camp d’onades. La propagació de les onades sobre la batimetria pertorbada crea gradients del transport de sediment longitudinal que causen el creixement i la migració de les ones de sorra. En aquesta tesi s’ha millorat un model morfodinàmic quasi 2D i no lineal per usar-lo per explorar la inestabilitat d’angle gran i predir la formació i evolució de les ones de sorra. El model assumeix que la dinàmica a gran escala i llarg termini està dominada pel transport de sediment longitudinal produït per les onades de manera que la morfodinàmica de la zona de rompents no es detalla. S’han superat algunes de les limitacions dels estudis anteriors de modelat de la inestabilitat d’angle gran. El camp d’onades es calcula amb un mòdul senzill de propagació sobre la batimetria canviant i el transport longitudinal s’estima usant una fórmula empírica. La dinàmica transversal es parametritza per descriure pertorbacions de la línia de costa amb una extensió transversal finita i dinàmica. S’han refinat les condicions sota les quals la inestabilitat d’angle gran produeix la formació d’ones de sorra. Les simulacions amb condicions constants d’onades i pertorbacions inicials aleatòries mostren que la línia de costa esdevé inestable quan l’angle d’incidència a la profunditat de tancament és major que un angle de 42 graus i les ones de sorra es desenvolupen a l’uníson. La dinàmica transversal té un rol essencial al determinar l’extensió transversal de les pertorbacions. Usant els valors per defecte dels paràmetres del model, les ones de sorra tenen espaiats d’entre 2 i 5 km i temps de creixement d’entre 5 i 10 anys, i migren en la direcció del transport a uns 0.5 km/any. Les simulacions també mostren que una pertorbació inicial localitzada desencadena la formació d’un tren d’ones de sorra. Com més obliqües i grans són les onades i com menor és el seu període major és la inestabilitat. Un clima d’onatge més realista, alternant onades d’angle d’incidència gran i petit, redueix el potencial de la inestabilitat d’angle gran. Calen almenys un 80% d’onades d’angle gran perquè es formin ones de sorra. El rang d’onades d’angle petit que poden succeir en una costa és major que el d’onades d’angle gran, i l’efecte estabilitzador de les onades d’angle petit (que produeix difusió) és més important que l’efecte desestabilitzador de les onades d’angle gran (que produeix creixement i migració). Fins i tot si les onades d’angle gran no dominen, el mecanisme d’inestabilitat pot tenir un paper important en la persistència i migració de pertorbacions de la línia de costa a gran escala. Els resultats s’assemblen qualitativament a les observacions d’ones de sorra. L’enfocament quasi 2D permet estudiar més detalls del mecanisme físic que hi ha darrere de la inestabilitat d’angle gran i del fet que existeixin longituds d’ona mínima i òptima per la formació d’ones de sorra. Els processos físics essencials són la dispersió de l’energia de l’onatge degut a la refracció, la concentració d’energia de les onades a les crestes de les ones de sorra i el decreixement monòton del transport litoral quan augmenta l’escala espacial.
9

Eco-sedimentological environments of an inter-tidal reef platform, Warraber Island, Torres Strait

Hart, Deirdre E., Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2003 (has links)
This thesis examines functional relationships between the morphologic, hydrodynamic, ecological and sedimentological characteristics of the Warraber reef platform, an inter-tidal reef island system, Central Torres Strait, Australia (10[degrees] 12??? S, 142 [degrees] 49??? E). Hydrodynamic and sediment-transport experiments were conducted on the reef flat using current meters, water level recorders and directional sediment traps. Results showed dominantly SE flows during the dry season and more variable NW to SE flows during the wet season. Topography and reefal water levels modulated the direction and strength of currents and the generation of wind-waves on the reef flat as well as the passage of waves over the reef rim. These hydrodynamic conditions are sufficient to induce significant transport of moderately fast to slow settling sediment (&gt-5.25 symbol psi) on the reef flat, though the platform as a whole is a relatively closed transport system. Carbonate production was estimated based on the key ecological variables of live assemblage distribution and cover. Overall, only 24% of the reef flat was occupied by carbonate-producing organisms. The average estimated carbonate-production rate for the reef was 1.6 kgm -2y-1 (0.07-4.37 kgm-2y-1). Production is dominated by coral (73%), with subordinate proportions contributed by coralline algae (19%). And molluscs, foraminifera and Halimeda (&lt4%) though actual reef-flat sediments did not reflect this potential. Instead, they were dominated by molluscs (35-55%), coralline algae (16-26%), coral (8-13%), Halimeda (7-8%) and foraminifera (5-10%). Differential rates of carbonate to sediment conversion meant the reef-platform sediments were more closely related to the cover of live organisms than to the contribution of carbonate production by each parent organism. The settling properties of the least altered particles of the five commonest constituents were measured and these provided the basis for an eco-sedimentological model of the reef-platform system. Modelled textures were compared to the actual textures, indicating the degree of textural alteration resulting from a combination of biological and physical processes, including sediment production, hydraulic sorting and mechanical breakdown. This analysis, integrated with the hydrodynamic, exposure and other data, was used to determine reef-platform surface-sediment sources, sinks and transport pathways. In using both the textual and constituent compositional properties of sediments, as well as information on local biological and physical processes, the model approach developed offers progress towards an integrative, interdisciplinary analysis of carbonate environments.
10

Beach morphodynamics in the lee of a wave farm : synergies with coastal defence

Abanades Tercero, Javier January 2017 (has links)
Wave energy has a great potential in many coastal areas thanks to a number of advantages: the abundant resource, the highest energy density of all renewables, the greater availability factors than e.g. wind or solar energy; and the low environmental and particularly visual impact. In addition, a novel advantage will be investigated in this work: the possibility of a synergetic use for carbon-free energy production and coastal protection. In this context, wave energy can contribute not only to decarbonising the energy supply and reducing greenhouse emissions, but also to mitigating coastal erosion. In effect, wave farms will be deployed nearshore to generate electricity from wave energy, and therefore the leeward coast will be exposed to a milder wave climate, which can potentially mitigate coastal erosion. This thesis aims to determine the effectiveness of wave farms for combating coastal erosion by means of a suite of state-of-the-art process-based numerical models that are applied in several case studies (Perranporth Beach,UK; and Xago Beach, Spain) and at different time scales (from the short-term to the long-term). A wave propagation model, SWAN, is used to establish the effects of the wave farm on the wave conditions. The outcomes of SWAN will be coupled to XBeach, a costal processes model that is applied to analyse the effects of the milder wave conditions on the coast. In addition to these models, empirical classifications and analytical solutions are used as well to characterise the alteration of the beach morphology due to the presence of a wave farm. The analysis of the wave farm impacts on the wave conditions and the beach morphology will be carried out through a set of ad hoc impact indicators. Parameters such as the reduction in the significant wave height, the performance of the wave farm, the effects on the seabed level and the erosion in the beach face area are defined to characterise these impacts. Moreover, the role played by the key design parameters of wave farms, e.g. farm-to-coast distance or layout, is also examined. The results from this analysis demonstrate that wave farms, in addition to their main purpose of generating carbon-free energy, are capable of reducing erosion at the coast. Storm-induced erosion is significantly reduced due to the presence of wave farms in the areas most at risk from this phenomenon. However, the effects of wave farms on the coast do not lend themselves to general statements, for they will depend on the wave farm design (WEC type, layout and farm-to-coast distance) and the characteristics of the area in question, as shown in this document for Perranporth and Xago. In summary, this synergy will improve the economic viability of wave farm projects through savings in conventional coastal defence measures, thereby fostering the development of this nascent renewable, reducing greenhouse gas emission and converging towards a more sustainable energy model. Thus, wave energy contributes to mitigating climate change by two means, one acting on the cause, the other on the effect: (i) by bringing down carbon emissions (cause) through its production of renewable energy, and (ii) by reducing coastal erosion (effect).

Page generated in 0.0734 seconds