• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Morphodynamics of beach-dune systems laden with large woody debris: Haida Gwaii (Queen Charlotte Islands), British Columbia

Anderson, Jeffrey 22 February 2010 (has links)
This thesis explores the geomorphic implications of large woody debris (LWD) residing in the backshore of beach-dune systems along the northeastern coasts of Haida Gwaii (Queen Charlotte Islands), British Columbia, Canada. Detailed topographic surveys were employed to quantify seasonal mass balance of the beach-dune systems along two distinctly different coastlines. Erosion and accretion potential models were applied to characterize sediment transport conditions. Holman’s (1986) R2% wave runup model was superimposed on total water levels, to model wave runup exceedence of the beach-dune junction elevation (6.5 m aCD). Modelled ‘erosion potential’ hours were demonstrated to correspond with observed erosion including removal of the LWD zone, resulting in decreased mass balance. Similarly, Fryberger and Dean’s (1979) Drift Potential model was used to model accretion potential hours. Modelled accretion potential hours were also able to effectively describe conditions when actual accretion occurred. The presence of LWD in the backshore offered two functions to the above processes: it acted effectively as an ‘accretion anchor’, promoting increased mass balance and rebuilding of the incipient foredune; and, it offered a mass of sediment fronting the foredune to protect the beach-dune system from storm wave attack and subsequent erosion.

Page generated in 0.1638 seconds