Spelling suggestions: "subject:"team coherence time"" "subject:"team coherence lime""
1 |
Beam Discovery and Tracking for Mobile MIMOAbdelrazek, Mohamed Naguib Hussein January 2022 (has links)
No description available.
|
2 |
Hardware Distortion-Aware Beamforming for MIMO Systems / Hårdvaruförvrängningsmedveten strålformning för MIMO-systemKhorsandmanesh, Yasaman January 2024 (has links)
In the upcoming era of communication systems, there is an anticipated shift towards using lower-grade hardware components to optimize size, cost, and power consumption. This shift is particularly beneficial for multiple-input multiple-output (MIMO) systems and internet-of-things devices, which require numerous components and extended battery lifes. However, using lower-grade components introduces impairments, including various non-linear and time-varying distortions affecting communication signals. Traditionally, these distortions have been treated as additional noise due to the lack of a rigorous theory. This thesis explores new perspective on how distortion structure can be exploited to optimize communication performance. We investigate the problem of distortion-aware beamforming in various scenarios. In the first part of this thesis, we focus on systems with limited fronthaul capacity. We propose an optimized linear precoding for advanced antenna systems (AAS) operating at a 5G base station (BS) within the constraints of a limited fronthaul capacity, modeled by a quantizer. The proposed novel precoding minimizes the mean-squared error (MSE) at the receiver side using a sphere decoding (SD) approach. After analyzing MSE minimization, a new linear precoding design is proposed to maximize the sum rate of the same system in the second part of this thesis. The latter problem is solved by a novel iterative algorithm inspired by the classical weighted minimum mean square error (WMMSE) approach. Additionally, a heuristic quantization-aware precoding method with lower computational complexity is presented, showing that it outperforms the quantization-unaware baseline. This baseline is an optimized infinite-resolution precoding which is then quantized. This study reveals that it is possible to double the sum rate at high SNR by selecting weights and precoding matrices that are quantization-aware. In the third part and final part of this thesis, we focus on the signaling problem in mobile millimeter-wave (mmWave) communication. The challenge of mmWave systems is the rapid fading variations and extensive pilot signaling. We explore the frequency of updating the combining matrix in a wideband mmWave point-to-point MIMO under user equipment (UE) mobility. The concept of beam coherence time is introduced to quantify the frequency at which the UE must update its downlink receive combining matrix. The study demonstrates that the beam coherence time can be even hundreds of times larger than the channel coherence time of small-scale fading. Simulations validate that the proposed lower bound on this defined concept guarantees no more than 50 \% loss of received signal gain (SG). / I den kommande eran av kommunikationssystem finns det en förväntad förändringmot att använda hårdvarukomponenter av lägre kvalitet för att optimera storlek, kostnad och strömförbrukning. Denna förändring är särskilt fördelaktig för MIMO-system(multiple-input multiple-output) och internet-of-things-enheter, som kräver många komponenter och förlängd batteritid. Användning av komponenter av lägre kvalitet medfördock försämringar, inklusive olika icke-linjära och tidsvarierande förvrängningar sompåverkar kommunikationssignaler. Traditionellt har dessa förvrängningar behandlatssom extra brus på grund av avsaknaden av en rigorös teori. Denna avhandling utforskarett nytt perspektiv på hur distorsionsstruktur kan utnyttjas för att optimera kommunikationsprestanda. Vi undersöker problemet med distorsionsmedveten strålformning iolika scenarier. I den första delen av detta examensarbete fokuserar vi på system med begränsadfronthaulkapacitet. Vi föreslår en optimerad linjär förkodning för avancerade antennsystem (AAS) som arbetar vid en 5G-basstation (BS) inom begränsningarna av en begränsad fronthaulkapacitet, modellerad av en kvantiserare. Den föreslagna nya förkodningen minimerar medelkvadratfelet (MSE) på mottagarsidan med användning av ensfäravkodningsmetod (SD). Efter att ha analyserat MSE-minimering, föreslås en ny linjär förkodningsdesignför att maximera summahastigheten för samma system i den andra delen av dennaavhandling. Det senare problemet löses av en ny iterativ algoritm inspirerad av denklassiska vägda minsta medelkvadratfel (WMMSE)-metoden. Dessutom presenterasen heuristisk kvantiseringsmedveten förkodningsmetod med lägre beräkningskomplexitet, som visar att den överträffar den kvantiseringsomedvetna baslinjen. Denna baslinje är en optimerad förkodning med oändlig upplösning som sedan kvantiseras. Dennastudie avslöjar att det är möjligt att fördubbla summahastigheten vid hög SNR genomatt välja vikter och förkodningsmatriser som är kvantiseringsmedvetna. I den tredje delen och sista delen av denna avhandling fokuserar vi på signaleringsproblemet i mobil millimetervågskommunikation (mmWave). Utmaningen medmmWave-system är de snabba blekningsvariationerna och omfattande pilotsignalering.Vi utforskar frekvensen av att uppdatera den kombinerande matrisen i en bredbandsmmWave punkt-till-punkt MIMO under användarutrustning (UE) mobilitet. Konceptet med strålkoherenstid introduceras för att kvantifiera frekvensen vid vilken UE:nmåste uppdatera sin nedlänksmottagningskombinationsmatris. Studien visar att strålkoherenstiden kan vara till och med hundratals gånger större än kanalkoherenstiden försmåskalig fädning. Simuleringar bekräftar att den föreslagna nedre gränsen för dettadefinierade koncept inte garanterar mer än 50 % förlust av mottagen signalförstärkning(SG) / <p>QC 20240219</p>
|
Page generated in 0.0608 seconds