• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonlinear Beam Deflection and Optical Properties of Semiconductors and Semimetals

Faryadras, Sanaz 01 January 2024 (has links) (PDF)
The nonlinear beam deflection (BD) technique is used to directly measure and time-resolve the nonlinearly-induced phase shift in a variety of materials. In this technique, a weak probe beam is spatially overlapped, while slightly displaced, with a strong excitation beam while the temporal delay is scanned. The excitation-induced index gradient, which for 3rd-order nonlinearities is proportional to the nonlinear refractive index 16 n2"> of the medium, deflects the weak probe beam. This deflection is determined using a position sensitive segmented detector after propagation to the far field. In this dissertation, we expand our previous work on BD theory to include the effects of the Gaussian spatial beam profile of the excitation, as opposed to a constant index gradient. We also explore the BD signal as we allow the spatial size and relative position of the probe with respect to the excitation beam, r, at the sample to vary to maximize the calculated signal. While the analysis requires numerical solutions, we find a simple empirical fitting function for the BD signal that allows determination of the nonlinear phase shift and thus the nonlinear refraction. We performed BD experiments at near-degenerate photon energies for various spot size ratios which resulted in very good agreement with our simulation results. In order to examine our empirical function the BD signal for various r (0.2-0.6) is measured while keeping the phase shift relatively constant. This helped us isolate the effect of spot size ratio on the BD signal. Our results showed the correct trend for the growth of BD signal as r increases, which is what is expected from our model. We also studied nondegenerate two-photon absorption (ND-2PA) in bulk silicon. We present the results of spectroscopic pump-probe measurements of ND-2PA in silicon across the indirect-gap (1.12 eV). We observed enhancement of the 2PA coefficient as the degree of degeneracy of pump and probe photon energies increased, and the dispersion compares favorably with our recently-developed semi-empirical theoretical model for the dispersion of indirect ND-2PA in silicon. Additionally, we experimentally investigated WTe2 which is a Weyl semimetal. Here, we prepared very thin flakes (10s of microns thick) of WTe2 and investigated the possibility of observing circular dichroism (CD) in pump-probe measurements, pumping at near IR and probing at mid-IR. Although we did not observe any CD, we believe this is because our pump photon energy is far from Weyl nodes and that we need to pump at mid-IR range.
2

Novel Diffraction Based Deflection Profiling For Microcantilever Sensor Technology

Phani, Arindam 09 1900 (has links) (PDF)
A novel optical diffraction based technique is proposed and demonstrated to measure deflections of the order of ~1nm in microcantilevers (MC) designed for sensing ultra-small forces of stress. The proposed method employs a double MC structure where one of the cantilevers acts as the active sensor beam, while the other as a reference. The active beam can respond to any minute change of stress, for example, molecular recognition induced surface stress, through bending (~1nm) relative to the other fixed beam. Optical diffraction patterns obtained from this double slit aperture mask with varying slit width, which is for the bending of MC due to loading, carries the deflection profile of the active beam. A significant part of the present work explores the possibility of connecting diffraction minima (or maxima) to the bending profile of the MC structure and thus the possibility to measure induced surface stress. To start with, it is also the aim to develop double MC sensors using PHDDA (Poly – Hexane diol diacrylate) because this material has the potential to achieve high mechanical deformation sensitivity in even moderately scaled down structures by virtue of its very low Young’s modulus. Moreover, the high thermal stability of PHDDA also ensures low thermally induced noise floors in microcantilever sensors. To demonstrate the proposed optical diffraction-based profiling technique, a bent microcantilever structure is designed and fabricated by an in-house developed Microstereolithography (MSL) system where, essentially one of the microcantilevers is fabricated with a bent profile by varying the gap between the two structures at each cured 2D patterned layer. The diffraction pattern obtained on transilluminating the fabricated structure by a spherical wavefront is analyzed and the possibility of obtaining the deflections at each cross section is ascertained. Since the proposed profiling technique relies on the accurate detection and measurement of shifts of intensity minima on the image plane, analysis of the minimum detectable shift in intensity minima for the employed optical interrogation setup with respect to the minimum detectable contrast and SNR of the optical measurement system is carried out, in order to justify the applicability of the proposed minima intensity shift measurement technique. The proposed novel diffraction based profiling technique can provide vital clue on the origins of surface stress at the atomic and molecular level by virtue of the entire bent profile due to adsorption induced bending thereby establishing microcantilever sensor technology as a more reliable and competitive approach for sensing ultra-low concentrations of biological and chemical agents.

Page generated in 0.0989 seconds