• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling of nailed timber connection : Displacement path dependency in sheathing-to-framing connections

Mmari, Winston January 2017 (has links)
Connections in wood have been investigated and advanced ever since the ground-breaking work of Johansen in the early nineteenth century. Nevertheless, not much investigation has been undertaken on the existence of load-displacement path dependency in a sheathing-to-framing connection. Herein, a sheathing-to-framing connection is investigated in relation to displacement path dependency. This work uses 3D Finite Element beam-on-foundation models of an Oriented Strand Board (OSB/2) sheathing nailed to a C24 wood framing, to study possible strategies to numerically simulate the displacement path dependency. The models are used to study if non-linear elastic or elastic-plastic embedment properties of an annular-ringed shank nail in the wood-based materials bring about the path dependency using Connector elements in combination with different material models in the FE software Abaqus. Numerical results are compared with corresponding experimental test results of the connection together with the Eurocode 5 approach. The outcome of the numerical study both; confirms the existence of displacement path dependency and shows that this property in the connection can be described by plasticity properties in nail, sheathing material and the wood framing.
2

Vibration Analysis Of Cracked Beams On Elastic Foundation Using Timoshenko Beam Theory

Batihan, Ali Cagri 01 September 2011 (has links) (PDF)
In this thesis, transverse vibration of a cracked beam on an elastic foundation and the effect of crack and foundation parameters on transverse vibration natural frequencies are studied. Analytical formulations are derived for a beam with rectangular cross section. The crack is an open type edge crack placed in the medium of the beam and it is uniform along the width of the beam. The cracked beam rests on an elastic foundation. The beam is modeled by two different beam theories, which are Euler-Bernoulli beam theory and Timoshenko beam theory. The effect of the crack is considered by representing the crack by rotational springs. The compliance of the spring that represents the crack is obtained by using fracture mechanics theories. Different foundation models are discussed / these models are Winkler Foundation, Pasternak Foundation, and generalized foundation. The equations of motion are derived by applying Newton&#039 / s 2nd law on an infinitesimal beam element. Non-dimensional parameters are introduced into equations of motion. The beam is separated into pieces at the crack location. By applying the compatibility conditions at the crack location and boundary conditions, characteristic equation whose roots give the non-dimensional natural frequencies is obtained. Numerical solutions are done for a beam with square cross sectional area. The effects of crack ratio, crack location and foundation parameters on transverse vibration natural frequencies are presented. It is observed that existence of crack reduces the natural frequencies. Also the elastic foundation increases the stiffness of the system thus the natural frequencies. The natural frequencies are also affected by the location of the crack.
3

Montovaná hala s administrativní budovou / The prefabricated factory building with office block

Krejčová, Jana January 2014 (has links)
Master´s thesis describes the design and assessment of selected elements concrete factory building with office block, elaboration of shape and reinforcemenet drawings of selected structural prefabricated elements. The work also includes technical report and details of connection elements. Calculation was performed also using a computer program SCIA Engineer and Excel.

Page generated in 0.262 seconds