• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Beam-scanning leaky-wave antenna based on CRLH-metamaterial for millimeter-wave applications

Alibakhshikenari, M., Virdee, B.S., Khalily, M., Shukla, P., See, C.H., Abd-Alhameed, Raed, Falcone, F., Limiti, E. 06 March 2019 (has links)
Yes / This paper presents empirical results of an innovative beam scanning leaky-wave antenna (LWA) which enables scanning over a wide angle from -35o to +34.5o between 57 GHz and 62 GHz, with broadside radiation centered at 60 GHz. The proposed LWA design is based on composite right/left-handed transmission-line (CRLH-TL) concept. The single layer antenna structure includes a matrix of 3×9 square slots that is printed on top of the dielectric substrate; and printed on the bottom ground-plane are Π and Tshaped slots that enhance the impedance bandwidth and radiation properties of the antenna. The proposed antenna structure exhibits metamaterial property. The slot matrix provides beam scanning as a function of frequency. Physical and electrical size of the antenna is 18.7×6×1.6 mm3 and 3.43􀣅􀫙×1.1􀣅􀫙×0.29􀣅􀫙, respectively; where 􀣅􀫙 is free space wavelength at 55 GHz. The antenna has a measured impedance bandwidth of 10 GHz (55 GHz to 65 GHz) or fractional bandwidth of 16.7%. Its optimum gain and efficiency are 7.8 dBi and 84.2% at 62 GHz. / Partially supported by innovation programme under grant agreement H2020-MSCA-ITN-2016 SECRET- 722424 and the financial support from the UK Engineering and Physical Sciences Research Council (EPSRC) under grant EP/E022936/1.

Page generated in 0.0614 seconds