• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 10
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigations in the mosaic disease of bean (Phaseolus vulgaris L.)

Nelson, Ray, January 1900 (has links)
Thesis (Ph. D.)--University of Michigan, 1931. / Cover title. Published also as Michigan Agricultural experiment station Technical bulletin no. 118, January, 1932. Bibliography: p. 63-67.
2

Genetics of resistance to the common bean mosaic virus (bean virus 1) in the bean (Phaseolus vulgaris L.)

Ali, Mohamed Abd Elkader, January 1949 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1949. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves [38]-39).
3

Studies of bean mosaic viruses I. The relation of southern bean mosaic to black root ; II. Gladiolus as a virus reservoir /

Bridgmon, George Harrison, January 1950 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1950. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 80-81).
4

ETIOLOGY, PATHOLOGY AND CHARACTERIZATION OF VIRUSES FROM BEANS GROWING IN THE SONORA DESERT OF MEXICO (COWPEA, CHLOROTIC MOTTLE).

Jimenez Garcia, Emilio January 1985 (has links)
Survey of crops of common bean (Phaseolus vulgaris L.) in Sonora, Mexico revealed the presence of two isometric viruses and one flexuous rod virus on the basis of host reaction, particle morphology, serology and physico-chemical properties. The isometric viruses were identified as Bean Southern Mosaic Virus (BSMV) and Cowpea Chlorotic Mottle Virus (CCMV); the flexuous rod virus was identified as Bean Common Mosaic Virus (BCMV). Using bean cultivar differentials, two strains of the potyvirus BCMV were identified, NY-15 and a previously undescribed strain designated YV-1. Host range, serological tests, and RNA electrophoresis indicated that the Sonoran BSMV cultures are similar to BSMV-strain A. Serology and RNA-electrophoresis indicated that the Sonoran CCMV isolates are identical to CCMV-strain A. BSMV and CCMV were always isolated as a mixture from seed lots and from field collected bean tissue. BCMV occurred alone or in mixed infections with BSMV and CCMV. BCMV was seed transmitted with an average efficiency of 58 percent. The BSMV-CCMV mixture was transmitted with an efficiency of 6 percent. BSMV and CCMV were seed transmitted together, but separate transmission of BSMV or CCMV was not detected. Commercial seed lots from two major bean growing regions of Sonora (Hermosillo Coast, Sonora River) were contaminated with the BSMV-CCMV mixture but not with BCMV. The average contamination level was 13 percent. Two common weeds present in Sonoran agricultural areas were found to be potential alternate hosts of CCMV. Both Sisymbrium irio L. and Melilotus indica L. were infected systemically, although the infection in M. indica was latent. Potential losses due to Sonoran bean viruses were measured in greenhouse experiments with the cultivar Pinto 111. BCMV strains caused a 29.4 to 60.1% reduction, whereas BSMV-CCMV mixtures induced a 22.5 to 74.6% yield reduction. A synergism occurred between the BSMV-CCMV mixture and BCMV resulting in more severe symptoms and a yield reduction of 92.7%. Synergistic effects were also observed between BSMV and CCMV. Actual yield reduction resulted from impaired flower production and, consequently, reduced pod production. Significant effects on plant tissue production, flower fertilization and seed quality were not observed. Cowpea chlorotic mottle virus infected mung bean (Vigna radiata (L.) Wilczek) a previously unreported host. Infection of mung bean by BSMV was only possible when CCMV was present in the inoculum. Both BSMV and CCMV could be isolated from symptomatic plants infected with the BSMV-CCMV mixture, however, symptoms on mung bean were unchanged from infection by CCMV alone.
5

A variant of bean pod mottle virus ; Altered root morphology of bean pod mottle virus-infected soybeans / Variant of bean pod mottle virus

Kaiser, Roger Paul January 2011 (has links)
Digitized by Kansas Correctional Industries
6

Mosaic diseases of Chinese yard-long bean (Vigna sesquipedalis (L.) Fruwirth) in Hong Kong.

Liang, Kar-wai, Phoebe. January 1968 (has links)
Thesis (M. Sc.)--University of Hong Kong, 1969. / Typewritten.
7

A study of several virus diseases of the bean (Phaseolus vulgaris L.) I. The relation of common bean mosaic to black root. II. Interrelation of bean virus 1 and bean virus 2 as shown by the cross-protection tests. III. A pod-distorting strain of the yellow mosaic virus of bean /

Grogan, Raymond Gerald, January 1948 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1948. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves [82]-84).
8

Search for Restriction Fragment Length Polymorphism of Phaseolus Vulgaris in Relation to the Immune Gene to Bean Common Mosaic Virus

Masli, Aryananda 08 1900 (has links)
A technique involving Restriction Fragment Length Polymorphism (RFLP) was used to observe the DNA fragment polymorphism between a bean cultivar with I/I genotype and a bean cultivar with i/i genotype. The I gene encodes immunity to bean common mosaic virus (BCMV).
9

Quantitative and qualitative comparisons of polyribosomes from healthy and southern bean mosaic virus-infected Contender bean

Rajewski, John Francis. January 1978 (has links)
Call number: LD2668 .T4 1978 R35 / Master of Science
10

Interactions of cowpea strains of southern bean mosaic virus and of tobacco mosaic virus in cowpea and pinto bean

Molefe, Thandie Leagajang January 1979 (has links)
Double infection by cowpea strains of southern bean mosaic virus (CP-SBMV) and of tobacco mosaic virus (CP-TMV) caused additive growth reductions in California blackeye cowpea. Plant height, weight and numbers of seed and pods were significantly reduced by double infection and by CP-TMV single infection compared to healthy and CP-SBMV-sing 1 y infected plants. Singly and doubly inoculated California blackeye cowpea plants developed CP-SBMV symptoms on the primary leaves, but CP-SBMV symptoms in doubly infected trifoliates were masked by CP-TMV symptoms. CP-TMV symptoms did not mask CP-SBMV symptoms in systemically infected trifoliate leaves of another cowpea variety, V45-Bots. CP-TMV infection conditioned systemic infection of V45~Bots by CP-SBMV, as indicated by infectivity,serology and analytical sucrose density gradient centrifugation. CP-TMV also induced susceptibility of Pinto to infection by CP-SBMV, as ascertained by infectivity, immunodiffusion and electron microscopy. Analytical sucrose density gradient centrifugation measurements demonstrated that in doubly inoculated primary leaves of California blackeye cowpea CP-SBMV and CP-TMV were synthesized less than in the same leaves singly inoculated. CP-SBMV synthesis in trifoliate leaves, following simultaneous inoculations of primary leaves, was enhanced 5 times that in singly infected trifoliate leaves, whereas CP-TMV synthesis was not greatly affected. When CP-TMV preceded CP-SBMV in the primary leaves by 2k and 72 hr CP-SBMV synthesis was enhanced more in trifoliate leaves that were undifferentiated at the time of inoculation than in those of plants simultaneously inoculated. When CP-TMV preceded CP-SBMV into preformed 3rd trifoliate leaves by 22 hr, the ratio of CP-SBMV concentration in doubly infected tissue to that in singly infected tissue was 2.7 versus 1.9 when both viruses arrived simultaneously at these leaves. When either virus preceded the other by 72 hr into preformed 3rd trifoliate leaves the synthesis of the challenging virus was greatly retarded. CP-SBMV synthesis was also enhanced by CP-TMV infection under differential temperature synchronous system of infection. Although virions of both viruses were detected in the same cell no genomic masking was detected by infectivity neutralization test. It is theorized that CP-TMV infection predisposes the host cells to infection by CP-SBMV and thus the enhanced synthesis of CP-SBMV. The effect of CP-TMV infection on CP-SBMV synthesis in cowpea seems to be a physiological one. CP-SBMV, but not CP-TMV, was transmitted through planted seed and decontaminated embryos of California blackeye cowpea. Buffer extracts made from decontaminated embryos also were infectious for CP-SBMV. Seed coats contained both viruses. Double infection of California blackeye cowpea decreased seed transmission of CP-SBMV from 13-5 to 7.6%. Buffer extracts of healthy seed were inhibitory to infectivity of both viruses. Germination of seed reduced infectivity of CP-SBMV in the seed coats, but not of CP-TMV. It is also concluded that seed transmission of CP-SBMV is a result of embryo infection rather than contamination with virus in the seed coats. / Land and Food Systems, Faculty of / Graduate

Page generated in 0.0968 seconds