Spelling suggestions: "subject:"dearing steels"" "subject:"clearing steels""
1 |
Influence of microstructure in rolling contact fatigue of bearing steels with inclusionsAlley, Erick Shaw 06 April 2009 (has links)
The use of bearings can be found in virtually all aspects of mechanical systems today. Reliability of these critical components is an important issue. Fatigue performance of bearings is a function of many factors, including service conditions, loading, material properties, environmental factors, and manufacturing processes. Crack nucleation, first spall generation and spall growth in rolling contact fatigue are known to be highly sensitive to the heterogeneity of the microstructure. Yet the current state-of-the-art in the design of high performance bearing materials and microstructures is highly empirical requiring substantial lengthy experimental testing to validate the reliability and performance of these new materials and processes. The approach presented here is designed to determine relative rolling contact fatigue performance as a function of microstructural attributes.
A fully three-dimensional finite element modeling allows for end effects to be captured that were not previously possible with two-dimensional plane-strain models, providing for a more realistic assessment of inclusion morphology and arbitrary orientations. The scaling of the finite element models has been optimized to capture the cyclic microplasticity around a modeled inclusion accurately and efficiently. To achieve this, two scales of geometric models were developed to incorporate different sized microstructural phenomena, with both models using traction boundary conditions derived from Hertzian contact stresses.
A microstructure-sensitive material model adds additional capability. A hybrid model that includes both martensite and austenite phases with additional internal state variable to track the volume fraction of retained austenite due to stress-assisted transformation were developed. This represents an advance over previous models where transform plasticity and crystal plasticity were not simultaneously accounted for in a homogenized element containing both phases.
Important links between microstructural features and fatigue indicator parameters (and relative fatigue performance) were determined. Demonstration cases show the relationship between inclusion orientation and relative fatigue performance, allowing for the identification of critical angles which maximize fatigue and reduce performance. An additional case study showed that increasing initial volume fraction of retained austenite reduces relative fatigue life. The tools developed allow for investigations of the influence of many microstructural aspects on relative fatigue performance with a numerical model that were not previously possible.
|
2 |
Microstructural alterations in bearing steels under rolling contact fatigueFu, Hanwei January 2017 (has links)
The formation of microstructural alterations in bearing steels under rolling contact fatigue (RCF) is systematically studied. A literature review summarizes current understanding in this field, leading to the key to the formation of these microstructural features being carbon redistribution as a consequence of cyclic rolling contact. In this context, a novel theory is postulated to describe the migration of carbon caused by gliding dislocations. The theory combines the Cottrell atmosphere theory with the Orowan equation and is capable of quantifying the dislocation-assisted carbon flux. Based on the proposed theory, models are suggested for different types of microstructural alterations formed in rolling contact fatigued bearings – dark etching regions (DERs), white etching bands (WEBs) and white etching areas (WEAs). Very good agreement is obtained between the predications made by the models and the experimental data from both this research and the literature. Moreover, the models consider the effects of contact pressure, temperature, rotational speed and number of cycles, and thus can be applied for universal RCF testing conditions. The reproduced microstructural features are also characterized using advanced characterization techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atom probe tomography (APT), with the observation validating the postulated formation mechanisms. It is demonstrated that DERs, WEBs and WEAs follow the same principle during formation – strain induced carbon redistribution. This is the first time that these microstructural alterations are quantitatively described using a unified theory. The achievements obtained from this research can be far reaching. It not only leads to great progress in understanding the phenomenology of RCF in bearing steels, but also can be further extended to other scenarios with similar phenomena such as severe plastic deformation and hydrogen embrittlement.
|
3 |
Hydrogen trapping in bearing steels : mechanisms and alloy designSzost, Blanka Angelika January 2013 (has links)
Hydrogen embrittlement is a problem that offers challenges both to technology and to the theory of metallurgy. In the presence of a hydrogen rich environment, applications such as rolling bearings display a significant decrease in alloy strength and accelerated failure due to rolling contact fatigue. In spite of these problems being well recognised, there is little understanding as to which mechanisms are present in hydrogen induced bearing failure. The objective of this thesis are twofold. First, a novel alloy combining the excellent hardness of bearing steels, and resistance to hydrogen embrittlement, is proposed. Second, a new technique to identify the nature of hydrogen embrittlement in bearing steels is suggested. The new alloy was a successful result of computer aided alloy design; thermodynamic and kinetic modelling were employed to design a composition and heat treatment combining (1) fine cementite providing a strong and ductile microstructure, and (2) nano-sized vanadium carbide precipitates acting as hydrogen traps. A novel technique is proposed to visualise the migration of hydrogen to indentation-induced cracks. The observations employing this technique strongly suggest that hydrogen enhanced localised plasticity prevails in bearing steels. While proposing a hydrogen tolerant bearing steel grade, and a new technique to visualize hydrogen damage, this thesis is expected to aid in increasing the reliability of bearings operating in hydrogen rich environments.
|
Page generated in 0.0659 seconds