• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tetrapod biodiversity through the Permo-Triassic Beaufort Group (Karoo Supergroup) of South Africa

Nicolas, Merrill Victoria Mary 15 August 2008 (has links)
A B S T R A C T The rocks of the Beaufort Group of South Africa record a remarkably complete depositional sequence incorporating a rich fossil tetrapod succession from the mid-Permian to mid-Triassic. This represents one of the best preserved ecological assemblages of pre-mammalian terrestrial tetrapods documenting the stem lineages of both mammals and dinosaurs. For more than a century large collections of fossils from the Beaufort Group have been built up at various museums in South Africa. With the co-operation of all the South African museums curating collections of Karoo fossils, a single standardised database has been compiled for the fossils collected from the Beaufort Group as well as a GIS system incorporating all the South African databases of fossil records. Major problems which had to be overcome related largely to the non-standardised nature of different databases, locality, and taxonomic information. Particularly problematic was entering ambiguous and vague locality information onto the GIS database, so that it would still be useful for qualitative evaluation. The created GIS database is a useful analytical tool, but requires streamlining to make it accessible to all users. Completion of the foundation phase of the GIS database has highlighted problems which need to be addressed in the future to make the database an effective tool for research purposes.
2

Palaeoenvironments of the Estcourt formation (Beaufort Group), KwaZulu-Natal.

Green, Dawn. January 1997 (has links)
At present the Karoo Basin covers approximately 20 000 km2. It is a large intracratonic basin which, from Carboniferous to Jurassic times, was infilled with a succession of sediments ranging from glacial deposits to those deposited in warm, equable conditions. The Beaufort Group forms part of this succession, and was deposited in a terrestrial, river dominated environment. The dominant lithologies exposed in the Estcourt region in the KwaZulu-Natal Midlands belong to the lower and middle Beaufort divided by the PermoTriassic boundary. The Permo-Triassic palaeoenvironment in this region is reconstructed using sedimentary profiles combined with the study of the fossil remains discovered in the area, including plant, body, and trace fossils. The lower Beaufort sediments in this region belong to the Estcourt Formation, and the Middle Beaufort sediments to the Belmont Formation. The Estcourt Formation is dominated by a succession of alternating sandstones, siltstones and mudstones, which are interpreted as representing sediments deposited in a fluvial-floodplain environment, which can be divided into two sub-environments. The first is dominated by sediments that were deposited by meandering rivers on a semi-arid floodplain, and the second sub-environment is represented by those sediments deposited in lacustrine environments. Both of these subenvironments are closely linked and alternate in the rock record indicating many episodes of transgressive-regressive lacustrine episodes. The Estcourt Formation can be closely correlated with the lower Beaufort sediments mapped in other regions of the Karoo Basin, indicating similar climatic and environmental controls throughout the Karoo Basin of southern Africa. The Estcourt Formation also contains a wide variety of body and trace fossils. The PermoTriassic boundary can be traced along the western border of Estcourt by using the distribution pattern of the two mammal-like reptiles Dicynodon and Lystrosaurus. There is evidence of an overlap in the distribution between these to mammal-like reptiles, which together with palaeoflora evidence, indicates that Lystrosaurus evolved during the Late Permian and not Early Triassic as previously thought. The first Triassic sediments are represented in the Estcourt region by a series of maroon shales which can be correlated with the Palingkloof Member. / Thesis (M.Sc.)-University of Natal, 1997.
3

Sedimentary environments and provenance of the Balfour Formation (Beaufort Group) in the area between Bedford and Adelaide, Eastern Cape Province, South Africa

Oghenekome, Monica Enifome January 2012 (has links)
The research examines the sedimentary environments and provenance of the Balfour Formation of the Beaufort Group (Karoo Supergroup) in the Eastern Cape Province, South Africa. This Formation occurs in the southeastern part of the Karoo Basin. It consists of sedimentary rocks, which are an alternating siltstone, shale and mudstone succession with subordinate interbedded sandstone and subsequently intruded by Karoo dolerite in the form of sills and dykes. ithostratigraphically, the Balfour Formation is subdivided into five units namely, from the base to the top, the Oudeberg, Daggaboersnek, Barberskrans, Elandsberg and Palingkloof Members. The Balfour Formation is overlain by the Katberg Formation. This study involved field investigations in the vicinity of the towns of Bedford and Adelaide with integrated stratigraphical, sedimentological and petrological studies. A geological map was constructed after field investigations. Lithofacies of the Balfour Formation that were studied are characterised by sandstone facies (Sh, Sm, St, Sr, Sp) and fine-grained sediments (Fl or Fsm) which reflect point-bar, cut-bank, channel and floodplain deposits. Lithologically, the Oudeberg Member consists of sandstone of which some units are internally massive alternating with thin laminated siltstone and mudstone. The Daggaboersnek Member is characterised by regular, generally non-lenticular, overall stratification, in the Barberkrans Member consists of sandstone lithosomes, while the Elandsberg Member is an argillaceous unit, similar to the Daggaboersnek Member. The Palingkloof Member is composed predominantly of red mudstone that can be used to distinguish the Balfour Formation from the overlying Katberg Formation, which consists predominantly of sandstone. The stratigraphic sequence displays two fining upward megacycles of sedimentary deposits with change in the sediment supply pattern from low-sinuosity to high-sinuosity river systems which reflect both braid and meandering deposits, respectively. Sedimentary structures in the sandstone units and the provenance of the Balfour Formation indicate that these deposits were produced by rivers flowing from the southeast with minor drift towards the northwest. According to the composition of the sediments and their sequence of deposition the Formation represents a fluvial environment. Mineralogical and grain size data from the sandstones of the various members of the Balfour Formation indicate the same source area of granitic, metamorphic and older sedimentary rocks and show no significant petrographic differences. The petrographic and geochemical investigations confirmed the sandstone to be feldspathic litharenite and ultralithofeldspathic sandstone. The palaeocurrent investigation indicates the main provenance to have been situated to the southeast of the Karoo basin. Heavy-mineral concentrations within the sandstones also give an indication that the source had a transitional arc plate tectonic setting.
4

Controls on river and overbank processes in an aggradation-dominated system : Permo-Triassic Beaufort Group, South Africa

Gulliford, Alice Rachel January 2014 (has links)
The Permo-Triassic lower Beaufort Group fluvial deposits extend over 100s of kilometres within the Karoo Basin, South Africa. A detailed study of the depositional architecture and stacking patterns of sand bodies within a 900 m thick succession has enabled interpretation of the controls on ancient river channel and overbank processes. Facies include very fine- to medium-grained sandstone, intra-formational conglomerate, mudstone and palaeosols. Channel-belts are dominated by upper flow regime structures, consistent with a flashy to ephemeral fluvial system. The overbank deposits comprise splays interbedded with purple, green and grey mudstone; these floodplain colour changes signify water table fluctuations. A hierarchy of channel-related elements has been established that recognises beds, bedsets, storeys, channel-belts, complexes and complex sets. Each channel-belt may be single- or multi-storey, whereby one storey represents the complete cut and fill cycle of a single migrating river, comprising bar accretion elements and channel-abandonment fill. The abandonment fill elements often consist of heterolithic plugs of climbing ripple-laminated very fine-grained sandstone, or interbedded claystone with siltstone. The Beaufort channel-belts preserve either lateral- or downstream-accretion patterns, or a combination. Each belt has either a lenticular or tabular geometry, recognisable by an erosional base overlain by intra-formational conglomerate lag and barform deposits. Genetically related channel-belts cluster to form complexes, of which two broad styles have been identified: Type A) laterally and vertically stacked channel-belts, and Type B) sub-vertically stacked channel-belts. There is evidence of localised clustering of sub-vertically stacked channel-belts adjacent to extensive overbank mudstone deposits. The apparent lack of a well-defined ‘container’ surface with mappable margins, suggests that this stacked channel-belt architecture represents an avulsion complex rather than a palaeovalley-fill. The lateral and stratigraphic variability in fluvial-overbank architecture is interpreted as the interplay of several controls. Allogenic forcing factors include, tectonic subsidence that influences accommodation, sediment supply, and high frequency climate cycles associated with the flashy discharge regime and expressed in the mudrock colour changes and distribution of palaeosols. The depositional river style, variability in channel-belt stacking patterns and compensational stacking of some channel-belt/splay complexes is interpreted to be the result of autogenic channel avulsion, supported by an absence of significant erosion. The relative merits of basin-axial trunk river and distributive fluvial system (DFS) models are assessed from detailed architectural and stratigraphic outcrop studies.

Page generated in 0.041 seconds