Spelling suggestions: "subject:"bedingte inklusionsabhängigkeiten"" "subject:"bedingte inklusionsabhängigkeit""
1 |
Covering or complete? : Discovering conditional inclusion dependenciesBauckmann, Jana, Abedjan, Ziawasch, Leser, Ulf, Müller, Heiko, Naumann, Felix January 2012 (has links)
Data dependencies, or integrity constraints, are used to improve the quality of a database schema, to optimize queries, and to ensure consistency in a database. In the last years conditional dependencies have been introduced to analyze and improve data quality. In short, a conditional dependency is a dependency with a limited scope defined by conditions over one or more attributes. Only the matching part of the instance must adhere to the dependency. In this paper we focus on conditional inclusion dependencies (CINDs).
We generalize the definition of CINDs, distinguishing covering and completeness conditions. We present a new use case for such CINDs showing their value for solving complex data quality tasks. Further, we define quality measures for conditions inspired by precision and recall. We propose efficient algorithms that identify covering and completeness conditions conforming to given quality thresholds. Our algorithms choose not only the condition values but also the condition attributes automatically. Finally, we show that our approach efficiently provides meaningful and helpful results for our use case. / Datenabhängigkeiten (wie zum Beispiel Integritätsbedingungen), werden verwendet, um die Qualität eines Datenbankschemas zu erhöhen, um Anfragen zu optimieren und um Konsistenz in einer Datenbank sicherzustellen. In den letzten Jahren wurden bedingte Abhängigkeiten (conditional dependencies) vorgestellt, die die Qualität von Daten analysieren und verbessern sollen. Eine bedingte Abhängigkeit ist eine Abhängigkeit mit begrenztem Gültigkeitsbereich, der über Bedingungen auf einem oder mehreren Attributen definiert wird. In diesem Bericht betrachten wir bedingte Inklusionsabhängigkeiten (conditional inclusion dependencies; CINDs).
Wir generalisieren die Definition von CINDs anhand der Unterscheidung von überdeckenden (covering) und vollständigen (completeness) Bedingungen. Wir stellen einen Anwendungsfall für solche CINDs vor, der den Nutzen von CINDs bei der Lösung komplexer Datenqualitätsprobleme aufzeigt. Darüber hinaus definieren wir Qualitätsmaße für Bedingungen basierend auf Sensitivität und Genauigkeit. Wir stellen effiziente Algorithmen vor, die überdeckende und vollständige Bedingungen innerhalb vorgegebener Schwellwerte finden. Unsere Algorithmen wählen nicht nur die Werte der Bedingungen, sondern finden auch die Bedingungsattribute automatisch. Abschließend zeigen wir, dass unser Ansatz effizient sinnvolle und hilfreiche Ergebnisse für den vorgestellten Anwendungsfall liefert.
|
Page generated in 0.2523 seconds