Spelling suggestions: "subject:"em1"" "subject:"nem1""
1 |
Etude de l’interaction entre un module de polarité Rho GTPase et l’environnement membranaire chez Saccharomyces cerevisiae / A study of the interaction between a Rho GTPase polarity module and the membrane environment in Saccharomyces cerevisiaeMeca, Julien 08 November 2018 (has links)
La polarité cellulaire, organisation asymétrique du matériel cellulaire dans l'espace et le temps, est fréquemment observée en biologie. Elle est nécessaire pour de nombreux mécanismes cellulaires essentiels allant de la division cellulaire et la migration au développement et la croissance polarisée. Comprendre comment la cellule génère et maintient cette polarité est crucial, les défauts de polarité étant liés à des maladies graves comme le cancer ou les maladies neurodégénératives. Chez la levure Saccharomyces cerevisiae, la polarité cellulaire est établie lorsque le module de la Rho GTPase Cdc42, qui comprend le facteur d'échange de nucléotide guanine (GEF) Cdc24 et la protéine scaffold Bem1, localise à un unique site à la membrane plasmique pour activer Cdc42 et ainsi, établir un axe de polarité utilisé pour la croissance et la division cellulaire. Les mécanismes responsables de l'activation de Cdc42 à un site unique au cortex pendant l'établissement de la polarité sont essentiels mais largement inconnus. En utilisant des expériences complémentaires d'imagerie in vivo et des expériences in vitro, je mis en évidence que le ciblage avide du module de Cdc42 à la membrane plasmique implique des interactions multivalentes entre des lipides anioniques et le module de Cdc42. En détail, j'ai démontré que la combinaison de plusieurs phospholipides anioniques, comprenant PS, PI4P et PI(4,5)P2, est nécessaire à la localisation de Bem1 et Cdc24 in vivo. J'ai identifié des groupements cationiques interagissant avec des lipides (CLICs) dans l'extrémité N-terminale de Bem1 qui étaient nécessaires et suffisants pour interagir avec des phospholipides anioniques. Réduire l’interaction de Bem1 avec les lipides en mutant la séquence CLICs a fortement diminué la localisation de Bem1 au niveau du cortex ainsi que la signalisation de Cdc42. En plus des CLICs de Bem1, le domaine PX de Bem1 et le domaine PH de Cdc24 augmentent davantage l'avidité du module GTPase pour les lipides anioniques et la combinaison des trois domaines est essentielle pour l'établissement de la polarité cellulaire. Ces résultats définissent pour la première fois le mécanisme de ciblage avide des activateurs de Cdc42 à la membrane plasmique pendant l'établissement de l'axe de polarité. / Cell polarity, the asymmetric organization of cell material in space and time, is frequently observed in biology. It is required for numerous essential cellular processes ranging from cell division and migration to development and polarized growth. Addressing how cells generate and maintain polarity is crucial, since defects in polarity are linked to severe diseases including cancer and neurodegeneration. In the budding yeast Saccharomyces cerevisiae, cell polarity is established when the Cdc42 Rho GTPase module, which includes the Guanine nucleotide Exchange Factor (GEF) Cdc24 and the scaffold protein Bem1, accumulate at a unique site on the plasma membrane to activate Cdc42 and establish the polarity axis used for cell growth and division. The mechanisms responsible for the site-specific activation of Cdc42 at the cortex during polarity establishment are essential but are largely unknown. Using complementary in vivo imaging and in vitro experiments, I found that the avid targeting of the Cdc42 GTPase module to the plasma membrane involves multivalent anionic lipid-Cdc42 module interactions. I found that a combination of anionic phospholipids, including PS, PI4P and PI(4,5)P2, are necessary for Bem1 and Cdc24 localization in vivo. I identified Cationic-enriched Lipid Interacting Clusters (CLICs) in the N-terminus of Bem1 that were necessary and sufficient for anionic phospholipid interactions. Reducing Bem1 lipid binding by mutating the CLICs strongly diminished the localization of Bem1 at the cortex and Cdc42 signaling. In addition to the Bem1 CLICs, the Bem1 PX domain and the Cdc24 PH domain increased the avidity of the GTPase module for anionic lipids, and a combination of all three domains was essential for the establishment of cell polarity. The results of my thesis define a mechanism of avid targeting of Cdc42 activators to the cortex during polarity axis establishment.
|
2 |
The G1 cyclin Cln3p regulates vacuole homeostasis through phosphorylation of a scaffold protein, Bem1p, in Saccharomyces cerevisiaeHan, Bong Kwan 25 April 2007 (has links)
How proliferating cells maintain the copy number and overall size of their organelles is
not clear. In the budding yeast Saccharomyces cerevisiae the G1 cyclins Cln1,2,3p
control initiation of cell division by regulating the activity of the cyclin-dependent
kinase (Cdk) Cdc28p. We show that Cln3p controls vacuolar (lysosomal) biogenesis and
segregation. First, loss of Cln3p, but not Cln1p or Cln2p, resulted in vacuolar
fragmentation. Although the vacuoles of cln3ÃÂ cells were fragmented, together they
occupied a large space, which accounted for a significant fraction of the overall cell size
increase in cln3ÃÂ cells. Second, cytosol prepared from cells lacking Cln3p had reduced
vacuolar homotypic fusion activity in cell-free assays. Third, vacuolar segregation was
perturbed in cln3ÃÂ cells. Our findings reveal a novel role for a eukaryotic G1 cyclin in
cytoplasmic organelle biogenesis and segregation.
Furthermore we show that the scaffold protein Bem1p, a critical regulator of
Cdc42p activity, is a downstream effector of Cln3p/Cdc28p complex. The Cdc42p
GTPase is known to be required for vacuole fusion. Our results suggest that Ser72 on
Bem1p is phosphorylated by Cdc28p in a Cln3p-dependent manner to promote vacuole fusion. Replacing Ser72 with Asp, to mimic phosphorylation at an optimal Cdkconsensus
site located in the first SH3 domain of Bem1p, suppressed vacuolar
fragmentation in cells lacking Cln3p. Using in vivo and in vitro assays, we found that
Cln3p was unable to promote vacuole fusion in the absence of Bem1p or in the presence
of a non-phosphorylatable Bem1p-Ser72Ala mutant. Furthermore, activation of Cdc42p
also suppressed vacuolar fragmentation in the absence of Cln3p. Our results provide a
mechanism that links cyclin-dependent kinase activity with vacuole fusion through
Bem1p and the Cdc42p GTPase cycle.
|
Page generated in 0.0316 seconds