Spelling suggestions: "subject:"bengla"" "subject:"cenglau""
1 |
Wordspotting from multilingual and stylistic documents / Repérage de mots dans les images de documents multilingues et graphiquesTarafdar, Arundhati 12 July 2017 (has links)
Les outils et méthodes d’analyse d’images de documents (DIA) donnent aujourd’hui la possibilité de faire des recherches par mots-clés dans des bases d’images de documents alors même qu’aucune transcription n’est disponible. Dans ce contexte, beaucoup de travaux ont déjà été réalisés sur les OCR ainsi que sur des systèmes de repérage de mots (spotting) dédiés à des documents textuels avec une mise en page simple. En revanche, très peu d’approches ont été étudiées pour faire de la recherche dans des documents contenant du texte multi-orienté et multi-échelle, comme dans les documents graphiques. Par exemple, les images de cartes géographiques peuvent contenir des symboles, des graphiques et du texte ayant des orientations et des tailles différentes. Dans ces documents, les caractères peuvent aussi être connectés entre eux ou bien à des éléments graphiques. Par conséquent, le repérage de mots dans ces documents se révèle être une tâche difficile. Dans cette thèse nous proposons un ensemble d’outils et méthodes dédiés au repérage de mots écrits en caractères bengali ou anglais (script Roman) dans des images de documents géographiques. L’approche proposée repose sur plusieurs originalités. / Word spotting in graphical documents is a very challenging task. To address such scenarios this thesis deals with developing a word spotting system dedicated to geographical documents with Bangla and English (Roman) scripts. In the proposed system, at first, text-graphics layers are separated using filtering, clustering and self-reinforcement through classifier. Additionally, instead of using binary decision we have used probabilistic measurement to represent the text components. Subsequently, in the text layer, character segmentation approach is applied using water-reservoir based method to extract individual character from the document. Then recognition of these isolated characters is done using rotation invariant feature, coupled with SVM classifier. Well recognized characters are then grouped based on their sizes. Initial spotting is started to find a query word among those groups of characters. In case if the system could spot a word partially due to any noise, SIFT is applied to identify missing portion of that partial spotting. Experimental results on Roman and Bangla scripts document images show that the method is feasible to spot a location in text labeled graphical documents. Experiments are done on an annotated dataset which was developed for this work. We have made this annotated dataset available publicly for other researchers.
|
Page generated in 0.0305 seconds