• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conception, synthèse et étude de nouvelles molécules bioactives. Propriétés antivirales et antimélanome

Joly, Jean-Patrick 19 December 2013 (has links)
Malgré des progrès importants réalisés ces dernières années, la lutte contre les infections virales (SIDA, hépatites etc.) et les cancers demeurent un problème de santé mondiale. Ce bref bilan met en évidence la nécessité de développer de nouvelles molécules pour contourner les limites des traitements disponibles actuellement. Cette thèse, articulée autour de trois grands thèmes, s’inscrit dans ce contexte. Nous avons d’abord mis au point de manière rationnelle de nouveaux ligands d’ARN capables de se lier sélectivement à certaines structures secondaires de type tige-boucle ou tige-renflement de l’ARN TAR du VIH-1. Ces ligands interagissent avec l’ARN grâce à l’action coopérative de deux motifs de reconnaissance : (i) une nucléobase modifiée qui peut reconnaitre spécifiquement une paire de base de l’ARN et (ii) des acides aminés qui agissent avec les bases non appariées de l’ARN. Ces deux motifs sont reliés grâce à une matrice aliphatique (ligands non nucléosidiques) ou une matrice 2-désoxyribose (ligands nucléosidiques). Des études biophysiques et biologiques ont été menés en collaboration avec l’équipe du Dr. L. Briant (CEAPBS, UMR5236-CNRS) pour connaitre leur activité antivirale et leur site d’interaction sur la cible. Nous avons ensuite développé des molécules de type benzènesulfonamide thiazoles pour cibler le mélanome résistant aux inhibiteurs de B-Raf. Des modulations effectuées sur ce squelette nous ont permis d’établir des relations structure/activité, en collaboration avec l’équipe de Dr. S. Rocchi (C3M, INSERM U895). Enfin, nous avons développé une stratégie de modification post-synthétique d’oligonucléotides en position anomérique par réaction clic. / Despite significant progress made in recent years, the fight against viral infections (AIDS, Hepatitis, etc.) and cancer remains a global health problem. This brief summary underlines the need for new compounds in order to overcome the limitations of currently available drugs. To this end, the main objective of this thesis is to address these issues by the investigation of three major research projects. We first developed new RNA ligands that selectively bind to RNA secondary structures such as the stem-loop or the stem-bulge of HIV-1 TAR RNA. These ligands interact with RNA thanks to the presence of two RNA binding domains acting in a cooperative manner: (i) a modified nucleobase that can specifically recognize an RNA base pair and (ii) basic amino acids that interact with strong affinity with surrounding free RNA nucleobases. These two patterns are connected by an aliphatic matrix (non-nucleoside ligands) or a 2-desoxyribose matrix (nucleoside-based ligands). Biophysical and biological studies were conducted in collaboration with the team of Dr. L. Briant (CEAPBS, UMR5236-CNRS) in order to study their antiviral activity and their mode of action. We next developed new bioactive molecules featuring a thiazole benzenesulfonamide scaffold to target melanoma cells resistant to B-Raf inhibitors. The modular synthesis of a large number of analogs allowed us to establish the structure/activity relationships, in collaboration with the team of Dr. S. Rocchi (C3M, INSERM U895). Finally, we developed a straightforward and convenient strategy for post-synthetic modification of oligonucleotides at the anomeric position using click chemistry.

Page generated in 0.0696 seconds