• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 1
  • Tagged with
  • 14
  • 14
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Scenario modeling for prediction of contaminant transport in Perth unconfined aquifer

Shukla, Chirayu S. January 2008 (has links)
Rapid development and growth of industrialization has brought immense enrichments in living standards of humans, however, improper planned development also brings along several environmental problems such as pollution of environment and excessive consumption of natural resources. Among all the others, uncontrolled utilization of water poses a severe threat to the coming generations. Past decades have witnessed water shortage in various countries of the world. Although about 80% of the earth’s surface is covered with water, around 97.2% of water is salty making it inappropriate for general usage. Among the rest of the 2.8%, which is present as fresh water on surface, a large proportion of it has been found to be severely polluted. The increasing demand of fresh water both for industrial and domestic usage adds great demand on the available groundwater. Moreover, the severe pollution of fresh water on the surface adds more stress on the available groundwater. In Australia, approximately 20% of water supply is from groundwater and in the case of Western Australia groundwater provides two thirds of its water supply needs. Thus, it is important to manage groundwater sources in Western Australia to achieve the optimum water utilization and maintain the water table and it is also essential to decide on an appropriate water budget. Groundwater flow modelling is an effective tool to get appropriate water distribution and, to examine effects from pumping on water levels and direction of groundwater flow paths, thereby helping in its proper management and utilization. Apart from monitoring the flow and utilization, groundwater flow modeling is also vital to keep the track of pollutant in the groundwater. Increasing surface pollution and landfill sites tend to pollute the groundwater due to leaching. / The above mentioned aspects formed the basis of the present research. A groundwater flow model was developed in Visual MODFLOW Premium to study the effect of three different types of soil in and around Perth region. This study also shows the hypothetical contaminated site model for benzene, toluene, ethylbenzene and xylene (BTEX) transport in Perth Superficial unconfined aquifer which includes three major aquifer sediments namely Bassendean Sand, Safety Bay Sand and Tamala Limestone. Among the four different contaminants it was observed that benzene is able to migrate quickly as compared to the other contaminants due to its smaller distribution coefficient. / This study also explored the major soil parameters such as effect of sorption, effective porosity and hydraulic conductivity on contaminant plume configuration and contaminants concentration for the three types of aquifer sediments. A critical comparison of the behaviour of the three different types of soils was also conducted. / Simulation results of sensitivity analysis have shown that sorption and hydraulic conductivity greatly affected the contaminant plume length and concentration of contaminants with much lesser effect shown by the effective porosity. The simulated results also showed that the movement of contaminant in Tamala Limestone is most rapid by comparing these three types of aquifer sediments together. Thus, it can be said that contaminated sites found in Tamala Limestone needs immediate remediation of contaminants to bring down the contaminants concentration in groundwater. / In brief, the thesis explores the current groundwater scenario in and around Perth region. Based on the information a hypothetical scenario simulation has critically analyzed the various parameters affecting the water and contaminant flow for the various soil parameters. The study is considered as a building block for further research on developing a remediation technique for groundwater contaminant treatment.
12

Tratamento de agua subterranea contaminada com BTEX utilizando fotocatalise heterogenea / Treatment of contaminated groundwater with BTEX using heterogene

Donaire, Patricia Pulcini Rosvald 24 January 2007 (has links)
Orientador: Nelson Eduardo Duran Caballero / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Quimica / Made available in DSpace on 2018-08-10T05:06:09Z (GMT). No. of bitstreams: 1 Donaire_PatriciaPulciniRosvald_D.pdf: 1368968 bytes, checksum: 36ddc25863076b787c4847f7b99b272a (MD5) Previous issue date: 2007 / Resumo: O presente trabalho trata do desenvolvimento de um reator tubular fotocatalítico aplicado ao tratamento de águas superficiais e subterrâneas contaminadas com compostos orgânicos voláteis, mais especificamente benzeno, tolueno, etilbenzeno e xileno (BTEX). O reator opera com recirculação da amostra e é constituído por dois catalisadores semicondutores, o dióxido de titânio e o dióxido de zircônio (TiO2/ZrO2). Estes catalisadores foram depositados sobre substratos de vidro na forma de filme misto e ativados com luz artificial proveniente de 2 lâmpadas de luz negra de 15 W cada, representando uma intensidade luminosa total de 3,6 mW cm. Os resultados demonstraram a viabilidade da utilização da fotocatálise heterogênea através da deposição de 15 camadas do filme misto sobre a matriz de vidro. A irradiação de água deionizada contaminada com 10 mg L de BTEX resultou em 95,9% de remoção destes compostos em pH 6,6 e vazão de recirculação de 280 mL min , onde somente o benzeno não alcançou o limite permitido pela legislação. A quantificação dos analitos foi realizada utilizando-se microextração em fase sólida (SPME). Observou-se uma cinética de pseudo-primeira ordem sendo a concentração inicial um fator limitante na taxa de degradação. A acetofenona foi a espécie intermediária detectada durante o processo fotocatalítico. No experimento de toxicidade utilizando Daphnia similis como organismo teste, a remoção de toxicidade foi atingida após 30 min de tratamento de água contaminada com gasolina onde o CE50-48 h inicial médio foi de 14,1% atingindo um CE50-48 h final médio de 84,3% / Abstract: The present work deals with the development of a photocatalytic tubular reactor to treat superficial and groundwaters contaminated with organic volatile compounds, more specifically benzene, toluene, ethylbenzene and xylene (BTEX). The reactor was operated with sample recirculation and it was constituted by two semiconductors catalysts, the titanium dioxide and the zirconium dioxide (TiO2/ZrO2). These catalysts were deposited over glass substrate in the form of mixed film and activated with artificial light originated from two 15 W black light lamps representing an average light intensity of 3.6 mW cm. The results showed the viability of heterogeneous photocatalysis using a deposition of 15 mixed film layers over the glass matrix. The photodegradation of deionized water contaminated with 10 mg L of BTEX gave a 95.9% of BTEX removal at pH 6.6 with a recirculation flow of 280 mL min . Among the other components of BTEX, only the benzene did not reach the permitted limit by legislation. The analytes were quantified by solid phase microextraction (SPME). The kinetic of pseudo-first order was observed and being the initial concentration a limiting factor in the degradation rate. The acetophenone was the intermediate species detected during photocatalytic process. In the toxicity experiment using Daphnia similis as organism test, the toxicity removal was reached after 30 min of treatment of contaminated water with gasoline where the initial average CE50-48 h was 14.1 % and reaching a final average CE50-48 h of the 84.3% / Doutorado / Quimica Analitica / Doutor em Quimica
13

Modificação de argilas esmectitas e aplicação na remoção de metais pesados e compostos aromáticos presentes nos efluentes da indústria petroquímica

CÂMARA, Josemar Guerra de Andrade 15 October 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-08-12T12:30:57Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese de Doutorado Josemar Guerra.pdf: 4223686 bytes, checksum: 5ef7d536e636cc8daf52f5ee42c401f1 (MD5) / Made available in DSpace on 2016-08-12T12:30:58Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese de Doutorado Josemar Guerra.pdf: 4223686 bytes, checksum: 5ef7d536e636cc8daf52f5ee42c401f1 (MD5) Previous issue date: 2015-10-15 / FINEP / ANP / PRH28 / Os derivados de petróleo são largamente empregados na geração de energia em todo o mundo. Por serem constituídos por diversos componentes, seus derivados podem ser empregados como matéria-prima em várias áreas industriais. No processamento do petróleo e no uso de seus derivados identificam-se inúmeras possibilidades de contaminação ao meio ambiente. Os resíduos líquidos gerados nas indústrias petroquímicas possuem diferentes composições químicas que inclui óleos e graxas, benzeno, tolueno e metais pesados, tais como níquel, cádmio, cobre e chumbo. Diante disso, as indústrias buscam, cada vez mais, ajustar os processos existentes através da adoção de procedimentos que visam diminuir a geração de resíduo e uma maior remoção de elementos tóxicos dos efluentes. Assim, este trabalho estudou a utilização de argilas esmectitas in natura e tratadas como adsorventes no processo de adsorção para remoção de poluentes orgânicos e de íons metálicos presentes em efluentes gerados nas indústrias de petroquímicas. A argila esmectita foi empregada no processo de adsorção dos compostos orgânicos benzeno e tolueno e no processo de troca catiônica para a remoção dos íons de metais pesado Cu+2 e Pb+2 como um processo de pós-tratamento para efluentes de refinaria. A partir do tratamento químico da argila esmectita policatiônica (argila chocolate) in natura com carbonato de sódio foi alcançada uma boa troca de íons de cálcio e magnésio por íons de sódio. Com o tratamento observou-se um aumento do número de íons trocáveis de 81,34 meq/100g para 89,39 meq/100g. Pode-se considerar que as argilas apresentam uma estrutura em que os poros são classificados como mesoporosos. Os experimentos de adsorção e de troca catiônica foram realizados em batelada empregando as argilas sódicas como adsorventes no estudo cinético e de equilíbrio. Os resultados obtidos a partir do modelo de equilíbrio de Langmuir-Freundlich indicaram que a argila sódica apresentou capacidade adsortiva perante o benzeno e o tolueno de 7,28mg/g e 7,39mg/g, respectivamente. Para os íons Cu+2 e Pb+2 foi aplicado o modelo de troca Catiônica o qual indicou uma capacidade de 0,99mg/g e 1,10mg/g para os íons Cu+2 e Pb+2, respectivamente. Além disso, o comportamento das análises cinética mostrou que as constantes cinéticas obtidas para o benzeno e tolueno apresentaram os valores de 0,0016 L/mg.min e 0,019 L/mg.min, respectivamente. Para os íons Cu+2 e Pb+2 em argila sódica as constantes cinéticas foram de 0,049 L/mg.min e 0,063 L/mg.min, respectivamente. / The oil derivatives are widely used in power generation throughout the world. For be constituted of several components, their derivatives can be used as raw materials in various industrial areas. In the oil processing and in the use of their derivatives are identified numerous possibilities for contamination to the environment. Liquid wastes generated in the petrochemical industries have different chemical compositions that include oils and greases, benzene, toluene, and heavy metals such as nickel, cadmium, copper and lead. Before that, the industries has been seeking, increasingly, adjust the existing processes by adopting procedures to reduce the generation of waste and to reach a greater removal of toxic elements effluent. This work has studied the use of smectite clays in natura and treated as adsorbents in the adsorption process for removing organic pollutants and metal ions present in wastewater generated in the petrochemical industries. The smectite clay was used in the adsorption of organic compounds benzene and toluene and the cation exchange process for the removal of heavy metal ions Cu+2 and Pb+2 as a post-treatment process for refinery effluents. From the chemical treatment of chocolate clay in natura with sodium carbonate has been achieved a good exchange of calcium and magnesium ions for sodium ions. With treatment there was an increase in the number of exchangeable ions of 81.34 meq/100g to 89.39 meq/100g. It can be considered that the clays have a structure in which the pores are classified as mesoporous. The adsorption and cation exchange experiments were conducted in batch mode using the sodium clays as adsorbents in the kinetic and equilibrium study. The results obtained from the Langmuir-Freundlich equilibrium model indicated that sodium clay adsorptive capacity presented to the benzene and toluene 7,28mg.g-1 and 7,39mg/g, respectively. For Cu+2 and Pb+2 ions was applied to the ion exchange model which indicated a capacity of 0,99mg.g-1 and 1,10mg.g-1 for Cu+2 and Pb+2 ions, respectively. Moreover, the behavior of the kinetic analysis showed that the kinetic constants obtained for benzene and toluene showed values of 0.0016 L.mg-1.min-1 and 0.019 L.mg-1.min-1 respectively. For Cu+2 and Pb+2 ions in sodium clay the kinetic constants were 0.049 L.mg-1.min-1 and 0.063 L.mg-1.min-1, respectively.
14

Organic acid coated magnetic nanparticles as adsorbent for organic pollutants in aqueous solution.

Masuku, Makhosazana Nancy 03 1900 (has links)
M. Tech. (Chemistry Department, Faculty of Applied and Computer Sciences) Vaal University of Technology. / Benzene, toluene and xylene (BTX) are water pollutants that appear very often in chemical and petrochemical wastewaters due to gasoline leakage from storage tanks and pipelines. These BTX compounds can cause adverse health effects on humans even at very low concentrations. Amongst the available pollutant removal methods from wastewater, adsorption has been used due to its ease of operation, simplicity and cost-effectiveness. Different adsorbents have been used for BTX removal, however the use of Magnetite-organic acid composites as an adsorbent seems to offer a much cheaper alternative. This work seeks to develop a one-step microwave synthesis and optimization of magnetite-oleic (MNP-OA) and magnetite-palmitic (MNP-PA) acid) composites. Response surface methodology was used to optimize the magnetite-organic acid composites. The optimum conditions estimated for MNP-OA acid composite were 78.3 % Fe content, 1561.9 S/cm conductivity, 82.2, 84.1, 85.3 mg/g for BTX adsorption capacity. The MNP-PA composite were 75.6 % Fe content, 1325.66 S/cm conductivity, 60.55, 64.47, 63.06 mg/g for BTX adsorption capacity. The materials were characterized, and the adsorption process was optimized for BTX removal from aqueous solution. X-ray analysis confirmed the formation of magnetite by the presence of both ferric and ferrous ion states on the surface. It was noted that after modification, the magnetite-organic acids characteristics peaks became broad and the height of the peaks decreased indicating that surface modification with organic acid controls the crystallinity of the material. The average cystalline size of MNP, MNP-OA, and MNP-PA composites were 19.7, 17.1 and 17.9 nm. FTIR analysis confirmed the target materials were produced and also to determine if the organic acids were imobilised on the surface of the magnetite. TEM images presented that the MNP, MNP-OA, and MNP-PA composites were spherical in shape with particle average sizes of 18.4 ± 0.5, 15.6 ± 0.5 and 16.5 ± 0.5 nm. The magnetite-organic acids show the particles with better isolated as compared to that of the MNP. The BET isotherms of the materials were described by a type IV characteristic related to uniform mesoporous materials. The magnetic saturation value for MNP, MNP-OA, and MNP-PA composites were 62.9, 59.0 and 51.0 emu/g. The decrease in magnetization was explained by the presence of the non-magnetic layer on magnetite surface. The pHpzc of MNP, MNP-OA, and MNP-PA composites were 6.9, 6.4 and 6.1. The decrease in pHpzc aftern modification was due to the charging acid-base interaction mechanism of metal oxide nanoparticles. The optimum pH for the adsorption of BTX onto MNP, MNP-OA, and MNP-PA composites was determined to be pH 7 for benzene, pH 8 for toluene and xylene. Among the three pollutants, xylene had the highest adsorption capacity followed by toluene and benzene. The optimum adsorbent dose for the adsorbents for the adsorption process was 0.1 g/dm3. The effect of time on the uptake of BTX onto MNP, MNP-OA, and MNP-PA composites show that initial adsorption of BTX occured between 0 and 3 min of contact time. The effect of initial concentration results shows the initial concentration of BTX increases from 100 to 350 mg/dm3 with an increase in adsorption capacity. The results suggest that the adsorption process is controlled by concentration driving force. The experimental data was fitted to the pseudo-first and pseudo-second-order kinetic models for all adsorbents and all pollutants. The pseudo-second-order models showed good correlation as compared to the first-pseudo model. Desorption studies for benzene, toluene and xylene using the pure magnetite, magnetite-palmitic and magnetite oleic acid composites indicate adsorption mrchanism can be explained in relation to acid–base chemistry. Electron donation from the phenyl ring of each benzene, toluene and xylene compound to surface iron atoms of magnetite has been suggested. The CH3OH and H2O desorbing agents were used and regeneration using five cycles show that the percentage desorption decreses from Benzene < Toluene < Xylene. The reduction in adsorption capacity after the cycles are attributed to decomposition of the adsorbents active sites and mass loss of the sample.

Page generated in 0.112 seconds