• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Time-resolved spectroscopic studies of meta methyl activation reaction of selected benzophenone and anthraquinone derivatives

Ma, Jiani, 马佳妮 January 2013 (has links)
Femtosecond time-resolved transient absorption (fs-TA), nanosecond time-resolved transient absorption (ns-TA), and nanosecond time-resolved resonance Raman spectroscopy (ns-TR3) methods were used to study the behaviors of the transient intermediates involved in the photophysical and photochemical processes of 3-methylbenzophenone (3-MeBP), 3-(hydroxymethyl)benzophenone (m-BPOH), and 2-(1-hydroxyethyl) 9,10-anthraquinone (2-HEAQ). A particular focus of this work was to study the unusual meta methyl activation reactions of these compounds in water-containing solutions. Density functional theory (DFT) calculations were conducted to help make assignments of the observed experimental transient species and to better understand the reaction mechanisms. First, the photophysical and photochemical reactions of m-BPOH were investigated in selected solvents. In acetonitrile (MeCN) the formation of the triplet state of m-BPOH, (denoted as (m-BPOH)3 ), was detected via an intersystem crossing (ISC). In 2-propanol (IPA), (m-BPOH)3 abstracted a hydrogen atom from the solvent molecule to form an aryl ketyl radical. In an acidic mixed aqueous solution at pH 2, the photoredox reaction appeared to be the predominant reaction. In a more acidic aqueous solution with [H+] =1.0 M, the photoredox reaction faced some competition from the overall photohydration reaction. Second, the photophysical and photochemical reactions of 2-HEAQ in MeCN, IPA, and neutral, acid and basic aqueous solutions were studied. The ISC process of 2-HEAQ took place in MeCN with generation of the triplet excited state species of 2-HEAQ, (2-HEAQ)3. In IPA solvent, (2-HEAQ)3 underwent a hydrogen abstraction with the solvent. A photoredox reaction takes place via an initial protonation process of the AQ group that is followed by deprotonation of the methylene C-H bond in aqueous solutions within a pH range from 2 to 10. Under a stronger acidic aqueous condition with [H+] =1.0 M, the photohydration reaction becomes the major reaction. In strong basic solutions (pH=12) only ISC was observed to take place. The unusual photoredox reaction takes place via protonation of the carbonyl oxygen first followed by deprotonation of the C-H bond in the side chain for both m-BPOH and 2-HEAQ. The protonation of the excited carbonyl oxygen group has been widely studied. On the other hand, the deprotonation of methylene C-H bond is unusual. Therefore, this photoredox reaction for m-BPOH and 2-HEAQ is termed as a meta methyl activation reaction. Third, the photophysical and photochemical reactions of 3-MeBP were explored and compared to those of 4-methylbenzophenone (4-MeBP). This work found that 3-MeBP and 4-MeBP exhibit similar behaviors with m-BPOH and 2-HEAQ in MeCN and IPA. In MeCN, both 3-MeBP and 4-MeBP undergo an efficient ISC process producing triplet excited state species, (3-MeBP)3 and (4-MeBP)3, respectively. In IPA, the (3-MeBP)3 and (4-MeBP)3 intermediates were quenched by the hydrogen abstraction reaction with the solvent. In acidic aqueous solutions (pH  2), the protonated carbonyl oxygen species (3-MeBPH+)3 and (4-(MeBPH+)3 are directly observed by fs-TA spectra. In the case of 4-MeBP, a photohydration is detected and the m-(4-MeBPH2O)3 and o-(4-MeBPH2O)1 species are observed. In contrast, an unusual meta methyl activation reaction is observed for 3-MeBP. In a stronger acid aqueous solution ([H+] =1.0 M) the meta methyl activation reaction becomes the predominant reaction. / published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy

Page generated in 0.0434 seconds