• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation into the bioisosteric approach in the design, synthesis and evaluation of muscarinic receptor ligands

Bhandare, Richie R. January 2013 (has links)
The acetylcholine (ACh) receptor system belongs to rhodopsin GPCR family and is an integral membrane protein divided into two types: muscarinic and nicotinic. The naturally occurring neurotransmitter acetylcholine binds to these two receptor systems non- selectively. The regulatory effects of the neurotransmitter acetylcholine are diverse ranging from autonomic nervous system and the central nervous system through different types of neurons innervated by cholinergic inputs. Muscarinic acetylcholine receptors (mAChRs) are divided into five receptor subtypes (M1-M5). In general, M1, M3 and M5 receptor subtypes are coupled via Gq like proteins; while M2 and M4 subtypes are coupled to Gi-proteins. Muscarinic receptors are widely distributed in the body where they mediate a variety of important physiological effects. mAChRs have been the target of drug development efforts for the treatment of various disorders including overactive bladder, Alzheimer's disease, pain, cognitive impairment, drug addiction, schizophrenia and Parkinson's disease. The development subtype selective ligands possess a challenge due to a high degree of homology among mAChR subtypes, however the recent availability of the X-ray crystal structure for the M2 and M3 receptor can be utilized for the design of new ligands. The pharmacophoric requirements for cholinergic ligands have been reported by numerous investigators based on structure-activity relationship (SAR) and/or molecular modeling data of known muscarinic ligands. These fundamental requirements are useful when designing muscarinic ligands but have provided little guidance in the design of subtype selective compounds. Our interest in developing novel muscarinic receptor ligands led to the design of lactone-based ligands using an approach similar to that reported by Kaiser et al. Preliminary binding studies of our previously synthesized lactone based compounds indicated that several were nonselective, low affinity (IC50 = µM range) muscarinic agonists (based on preliminary in vivo data). Hence based on the background information, we decided to utilize the previously synthesized lactone parent compound as lead molecule set out to investigate a new series of lactone based compounds in order improve the affinity and later the selectivity of ligands. Bioisosteric approach has been investigated for the metabolic lability of the lactone ring. Four probable bioisosteres have been evaluated: tetrahydrofuran, 1,3-benzodioxole, oxazolidinone and chromone. Thermal/microwave assisted synthesis has been utilized in the generation of intermediates as well as final compounds. Preliminary screening and further evaluation (IC50/ subtype selectivity) has resulted in the identification of promising fragments as bioisosteres for the lactone ring. / Pharmaceutical Sciences / Accompanied by one .pdf file.
2

Conversion of pharmaceuticals and other drugs by fungal peroxygenases / Umsetzung von Pharmazeutika und psychoaktiven Substanzen mit pilzlichen Peroxygenasen

Poraj-Kobielska, Marzena 17 June 2013 (has links) (PDF)
Over the recent years, increasing scientific attention has been paid to pharmaceuticals, other drugs and their metabolites. These substances are of particular interest because of their physiological, toxicological and ecotoxicological effects in the human body and respectively in the environment. Cytochrome P450 enzymes (P450s) play a key role in the conversion and detoxification of bioactive compounds including many pharmaceuticals and drugs. Most of these enzymes belong to the monooxygenases; they are intracellular and rather unstable biocatalysts that are difficult to purify and require expensive, complex cofactors, which alltogether hampers their use in isolated form. The investigations carried out here with fungal peroxygenases have shown that this enzyme sub-subclass (EC 1.11.2.x) has a promising potential for oxyfunctionalizations and can catalyze a variety of reactions typical for P450s. Peroxygenases are extracellular, i.e. secreted fungal enzymes with high stability, which merely need peroxide for function. Results obtained with the unspecific/aromatic peroxygenases (APOs) of Agrocybe aegerita, Coprinellus radians and Marasmius rotula have demonstrated that APOs catalyze numerous H2O2-dependent monooxygenations of pharmaceuticals and psychoactive drugs. Among them are i) the monooxygenation of aromatic compounds, ii) the benzylic hydroxylation of toluene derivatives, iii) the O-dealkylation of different ether structures including the scission of benzodioxoles (O-demethylenation) and esters as well as iv) the N-dealkylation of secondary and tertiary amines. The peroxygenases studied considerably differ in their substrate spectrum and the preferred positions of oxidation. This finding opens the possibility to develop in the future an “enzymatic toolbox“ on the basis of fungal peroxygenases for the oxyfunctionalization of pharmaceutically relevant compounds. Mechanistic studies showed that (1) the monooxygenations always proceed via incorporation of one oxygen atom from the peroxide, (2) the demethylation of phenacetind1 established a deuterium isotope effect similar to P450s, (3) the catalytic efficiencies for the studied oxidations are in the same range as those of P450s (though the kcat- and Km values are noticeably higher), (4) the kinetic studies with nitro-1,3-benzodioxole gave parallel double reciprocal plots suggestive of a “ping pong” mechanism, (5) the substrate spectrum and the activity pattern of APOs follows in a wide range those of the human key P450s as well as that (6) the difference spectra obtained in bindings studies are of the phenol type of P450s. Furthermore, APOs were found to be stable and active in long term experiments over two weeks and they oxidized pharmaceuticals at low, environmentally relevant concentration (ppb range). All the above properties strongly indicate that APOs respresent an interesting alternative for the enzymatic conversion of pharmaceuticals as well as for the preparation of human drug metabolites, for example, in medicinal and pharmacological research or the bioremediation sector (removal of pharmaceuticals from environmental media). / In den letzten Jahren sind Pharmazeutika und deren Metabolite mehr und mehr in den Fokus der Wissenschaft gerückt. Diese Substanzen sind aufgrund ihrer physiologischen und toxikologischen sowie ökotoxikologischen Wirkungen im menschlichen Körper bzw. in der Umwelt von besonderem Interesse. Cytochrom-P450-Enzyme (P450s) spielen eine Schlüsselrolle bei der Umsetzung und Detoxifizierung bioaktiver Substanzen, darunter vieler Pharmazeutika und Drogen. Es handelt sich bei diesen Enzymen in erster Linie um Monooxygenasen, die intrazellulär lokalisiert und relativ instabil sind; sie benötigen komplexe, teure Kofaktoren und sind nur unter hohem Aufwand zu reinigen, was ihre Anwendung in isolierter Form insgesamt erschwert. Die hier durchgeführten Untersuchungen zu pilzlichen Peroxygenasen haben gezeigt, dass diese Enzymsubklasse (EC 1.11.2.x) ein hohes Oxyfunktionalisierungspotenzial besitzt und eine Vielzahl P450-typischer Reaktionen zu katalysieren vermag. Peroxygenasen sind extrazelluläre, d.h. sekretierte Pilzenzyme, die eine hohe Stabilität aufweisen und lediglich ein Peroxid als Kosubstrat benötigen. Die unter Verwendung der unspezifischen/aromatischen Peroxygenasen (APOs) von Agrocybe aegerita, Coprinellus radians und Marasmius rotula gewonnenen Ergebnisse belegen, dass APOs verschiedene H2O2-abhängige Monooxygenierungen von Pharmazeutika und psychoaktiven Substanzen realisieren. Dazu gehören i) die Monooxygenierung von Aromaten, ii) die benzylische Hydroxylierung von Toluolderivaten, iii) die O-Dealkylierung verschiedener Etherstrukturen einschließlich der Spaltung von Benzodioxolen (O-Demethylenierung) und Estern sowie iv) die N-Dealkylierung von sekundären und tertiären Aminen. Die untersuchten Peroxygenasen wiesen teilweise deutliche Unterschiede im Substratspektrum und den präferierten Oxidationspositionen auf. Dieser Befund eröffnet die Möglichkeit, zukünftig einen „enzymatischen Werkzeugkasten“ auf Basis pilzlicher Peroxygenasen für die Oxyfunktionalisierung von pharmazeutisch relevanten Wirkstoffen zu entwickeln. Mechanistische Experimente zeigten, dass (1) die Monooxygenierungen stets unter Einbau eines aus dem Peroxid stammenden Sauerstoffatoms erfolgen, (2) die Deethylierung von Phenacetin-d1 einen Deuteriumisotopeneffekt ähnlich dem der P450s aufweist, (3) die katalytischen Effizienzen für die untersuchten Oxidationen im gleichen Bereich wie die der P450s liegen (wobei die kcat- und Km-Werte deutlich höher ausfallen), (4) die kinetischen Untersuchungen zur Oxidation von Nitro-1,3-Benzodioxol parallele Verläufe der ermittelten Ausgleichsgeraden in der doppelt reziproken Darstellung ergaben, was für einen “Ping-Pong-Mechanismus“ spricht, (5) sich das Substratspektrum und die Aktivitätsmuster der APOs in einem weiten Bereich mit denen der wichtigsten menschlichen P450s decken sowie dass (6) die in Bindungsstudien gewonnenen Differenzspektren denen des Phenoltyps der P450s entsprechen. Desweiteren erwiesen sich APOs in Langzeitexperimenten über zwei Wochen als stabil und aktiv und sie waren in der Lage, Pharmazeutika in umweltrelevanten Konzentrationen (ppb-Bereich) zu oxidieren. All die genannten Eigenschaften legen nahe, dass APOs eine interessante Alternative zur enzymatischen Umsetzung von Pharmazeutika sowie zur Herstellung von humanen Pharmazeutika-Metaboliten darstellen, die z.B. Einsatz in der medizinischpharmakologischen Forschung oder im Umweltbereich (Entfernung von Pharmazeutika aus Umweltmedien) finden könnten.
3

Conversion of pharmaceuticals and other drugs by fungal peroxygenases

Poraj-Kobielska, Marzena 26 April 2013 (has links)
Over the recent years, increasing scientific attention has been paid to pharmaceuticals, other drugs and their metabolites. These substances are of particular interest because of their physiological, toxicological and ecotoxicological effects in the human body and respectively in the environment. Cytochrome P450 enzymes (P450s) play a key role in the conversion and detoxification of bioactive compounds including many pharmaceuticals and drugs. Most of these enzymes belong to the monooxygenases; they are intracellular and rather unstable biocatalysts that are difficult to purify and require expensive, complex cofactors, which alltogether hampers their use in isolated form. The investigations carried out here with fungal peroxygenases have shown that this enzyme sub-subclass (EC 1.11.2.x) has a promising potential for oxyfunctionalizations and can catalyze a variety of reactions typical for P450s. Peroxygenases are extracellular, i.e. secreted fungal enzymes with high stability, which merely need peroxide for function. Results obtained with the unspecific/aromatic peroxygenases (APOs) of Agrocybe aegerita, Coprinellus radians and Marasmius rotula have demonstrated that APOs catalyze numerous H2O2-dependent monooxygenations of pharmaceuticals and psychoactive drugs. Among them are i) the monooxygenation of aromatic compounds, ii) the benzylic hydroxylation of toluene derivatives, iii) the O-dealkylation of different ether structures including the scission of benzodioxoles (O-demethylenation) and esters as well as iv) the N-dealkylation of secondary and tertiary amines. The peroxygenases studied considerably differ in their substrate spectrum and the preferred positions of oxidation. This finding opens the possibility to develop in the future an “enzymatic toolbox“ on the basis of fungal peroxygenases for the oxyfunctionalization of pharmaceutically relevant compounds. Mechanistic studies showed that (1) the monooxygenations always proceed via incorporation of one oxygen atom from the peroxide, (2) the demethylation of phenacetind1 established a deuterium isotope effect similar to P450s, (3) the catalytic efficiencies for the studied oxidations are in the same range as those of P450s (though the kcat- and Km values are noticeably higher), (4) the kinetic studies with nitro-1,3-benzodioxole gave parallel double reciprocal plots suggestive of a “ping pong” mechanism, (5) the substrate spectrum and the activity pattern of APOs follows in a wide range those of the human key P450s as well as that (6) the difference spectra obtained in bindings studies are of the phenol type of P450s. Furthermore, APOs were found to be stable and active in long term experiments over two weeks and they oxidized pharmaceuticals at low, environmentally relevant concentration (ppb range). All the above properties strongly indicate that APOs respresent an interesting alternative for the enzymatic conversion of pharmaceuticals as well as for the preparation of human drug metabolites, for example, in medicinal and pharmacological research or the bioremediation sector (removal of pharmaceuticals from environmental media). / In den letzten Jahren sind Pharmazeutika und deren Metabolite mehr und mehr in den Fokus der Wissenschaft gerückt. Diese Substanzen sind aufgrund ihrer physiologischen und toxikologischen sowie ökotoxikologischen Wirkungen im menschlichen Körper bzw. in der Umwelt von besonderem Interesse. Cytochrom-P450-Enzyme (P450s) spielen eine Schlüsselrolle bei der Umsetzung und Detoxifizierung bioaktiver Substanzen, darunter vieler Pharmazeutika und Drogen. Es handelt sich bei diesen Enzymen in erster Linie um Monooxygenasen, die intrazellulär lokalisiert und relativ instabil sind; sie benötigen komplexe, teure Kofaktoren und sind nur unter hohem Aufwand zu reinigen, was ihre Anwendung in isolierter Form insgesamt erschwert. Die hier durchgeführten Untersuchungen zu pilzlichen Peroxygenasen haben gezeigt, dass diese Enzymsubklasse (EC 1.11.2.x) ein hohes Oxyfunktionalisierungspotenzial besitzt und eine Vielzahl P450-typischer Reaktionen zu katalysieren vermag. Peroxygenasen sind extrazelluläre, d.h. sekretierte Pilzenzyme, die eine hohe Stabilität aufweisen und lediglich ein Peroxid als Kosubstrat benötigen. Die unter Verwendung der unspezifischen/aromatischen Peroxygenasen (APOs) von Agrocybe aegerita, Coprinellus radians und Marasmius rotula gewonnenen Ergebnisse belegen, dass APOs verschiedene H2O2-abhängige Monooxygenierungen von Pharmazeutika und psychoaktiven Substanzen realisieren. Dazu gehören i) die Monooxygenierung von Aromaten, ii) die benzylische Hydroxylierung von Toluolderivaten, iii) die O-Dealkylierung verschiedener Etherstrukturen einschließlich der Spaltung von Benzodioxolen (O-Demethylenierung) und Estern sowie iv) die N-Dealkylierung von sekundären und tertiären Aminen. Die untersuchten Peroxygenasen wiesen teilweise deutliche Unterschiede im Substratspektrum und den präferierten Oxidationspositionen auf. Dieser Befund eröffnet die Möglichkeit, zukünftig einen „enzymatischen Werkzeugkasten“ auf Basis pilzlicher Peroxygenasen für die Oxyfunktionalisierung von pharmazeutisch relevanten Wirkstoffen zu entwickeln. Mechanistische Experimente zeigten, dass (1) die Monooxygenierungen stets unter Einbau eines aus dem Peroxid stammenden Sauerstoffatoms erfolgen, (2) die Deethylierung von Phenacetin-d1 einen Deuteriumisotopeneffekt ähnlich dem der P450s aufweist, (3) die katalytischen Effizienzen für die untersuchten Oxidationen im gleichen Bereich wie die der P450s liegen (wobei die kcat- und Km-Werte deutlich höher ausfallen), (4) die kinetischen Untersuchungen zur Oxidation von Nitro-1,3-Benzodioxol parallele Verläufe der ermittelten Ausgleichsgeraden in der doppelt reziproken Darstellung ergaben, was für einen “Ping-Pong-Mechanismus“ spricht, (5) sich das Substratspektrum und die Aktivitätsmuster der APOs in einem weiten Bereich mit denen der wichtigsten menschlichen P450s decken sowie dass (6) die in Bindungsstudien gewonnenen Differenzspektren denen des Phenoltyps der P450s entsprechen. Desweiteren erwiesen sich APOs in Langzeitexperimenten über zwei Wochen als stabil und aktiv und sie waren in der Lage, Pharmazeutika in umweltrelevanten Konzentrationen (ppb-Bereich) zu oxidieren. All die genannten Eigenschaften legen nahe, dass APOs eine interessante Alternative zur enzymatischen Umsetzung von Pharmazeutika sowie zur Herstellung von humanen Pharmazeutika-Metaboliten darstellen, die z.B. Einsatz in der medizinischpharmakologischen Forschung oder im Umweltbereich (Entfernung von Pharmazeutika aus Umweltmedien) finden könnten.

Page generated in 0.0237 seconds