Spelling suggestions: "subject:"bermuda graingrowth"" "subject:"bermuda bass.growth""
1 |
Growth and heavy metal uptake by cynodon dactylon grown in sludge-amended soil substrates.January 1993 (has links)
by Ngar, Yuen-ngor. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1993. / Includes bibliographical references (leaves 186-196). / Chapter Chapter 1 --- Introduction Page / Chapter 1.1 --- Sludge as a waste problem --- p.1 / Chapter 1.2 --- The degraded geological environment of Hong Kong --- p.2 / Chapter 1.3 --- Use of weathered granitic material and sand as planting media --- p.3 / Chapter 1.4 --- Need of soil improvement material --- p.4 / Chapter 1.5 --- Potential for land application of sewage sludge --- p.5 / Chapter 1.6 --- Objectives of study --- p.6 / Chapter 1.7 --- Significance of study --- p.6 / Chapter Chapter 2 --- Literature Review / Chapter 2.1 --- Soil organic amendment for vegetation establishment --- p.9 / Chapter 2.2 --- Types and properties of sewage sludge --- p.10 / Chapter 2.3 --- Guidelines for land application of sludge --- p.12 / Chapter 2.3.1 --- Cation exchange capacity --- p.13 / Chapter 2.3.2 --- Zinc equivalent concept --- p.14 / Chapter 2.4 --- Effects of sludge on soil chemical and physical properties --- p.15 / Chapter 2.4.1 --- Chemical properties --- p.15 / Chapter 2.4.2 --- Physical properties --- p.18 / Chapter 2.5 --- Effects of sludge application on vegetation --- p.19 / Chapter 2.5.1 --- Germination --- p.19 / Chapter 2.5.2 --- Grass growth --- p.20 / Chapter 2.6.1 --- Choice of heavy metals for study --- p.21 / Chapter 2.6.2 --- Factors governing heavy metal availability --- p.25 / Chapter 2.6.3 --- Effects of lime on sludge-amended soil and the heavy metal availability --- p.26 / Chapter 2.6.4 --- Assessing available sludge-borne heavy metals --- p.27 / Chapter Chapter 3 --- Germination and seedling growth of bermudagrass in sludge-amended sand and CDG / Chapter 3 .1 --- Introduction --- p.30 / Chapter 3.2 --- Experimental design --- p.31 / Chapter 3.3 --- Experimental results --- p.34 / Chapter 3.3.1 --- Seed germination --- p.34 / Chapter 3.3.2 --- Seedlings and biomass growth --- p.35 / Chapter 3.3.3 --- DTPA-Extractable heavy metals --- p.39 / Chapter 3.3.4 --- Total heavy metals in plant tissue --- p.44 / Chapter 3.3.5 --- Chemical properties of the soil substrates --- p.49 / Chapter 3.4 --- Discussion --- p.54 / Chapter 3.4.1 --- Germination --- p.54 / Chapter 3.4.2 --- Nutrient effect --- p.56 / Chapter 3.4.3 --- Heavy metal availability from substrates --- p.59 / Chapter 3.4.4 --- Heavy metal uptake by the seedlings --- p.61 / Chapter 3.4.4.1 --- Metal uptake efficiency --- p.61 / Chapter 3.4.4.2 --- Amount of heavy metal uptake --- p.63 / Chapter 3.4.5 --- Textural characteristics --- p.66 / Chapter 3.5 --- Conclusions --- p.67 / Chapter Chapter 4 --- Growth and heavy metal uptake by bermudagrass grown in sludge-amended substrates / Chapter 4.1 --- Introduction --- p.70 / Chapter 4.2 --- Experimental design --- p.71 / Chapter 4.3 --- Results --- p.74 / Chapter 4.3.1 --- Biomass growth --- p.74 / Chapter 4.3.2 --- Heavy metal content of plant tissues --- p.82 / Chapter 4.3.2.1 --- Heavy metal content of the shoot --- p.83 / Chapter 4.3.2.2 --- Heavy metal content of the root --- p.89 / Chapter 4.3.3 --- Comparing the heavy metal levels in the shoot and root portions --- p.93 / Chapter 4.3.4 --- DTPA-extractable heavy metal content in soil substrates --- p.94 / Chapter 4.3.5 --- Chemical properties of the substrates --- p.100 / Chapter 4.4 --- Discussion --- p.103 / Chapter 4.4.1 --- Shoot biomass (First clipping) --- p.104 / Chapter 4.4.2 --- Shoot biomass (Second clipping) --- p.105 / Chapter 4.4.3 --- Shoot biomass ratio between the two clippings --- p.107 / Chapter 4.4.4 --- Total shoot biomass --- p.108 / Chapter 4.4.5 --- Root biomass and root: shoot ratios --- p.112 / Chapter 4.4.5.1 --- Nutrient effect --- p.113 / Chapter 4.4.5.2 --- Heavy metal phytotoxicity --- p.115 / Chapter 4.4.6 --- Total biomass production --- p.117 / Chapter 4.5 --- Conclusions --- p.118 / Chapter Chapter 5 --- Effect of lime on the growth and heavy metal uptake of bermudagrass in sludge-amended substrates / Chapter 5.1 --- Introduction --- p.121 / Chapter 5.2 --- Experimental design --- p.123 / Chapter 5.3 --- Results --- p.125 / Chapter 5.3.1 --- Biomass growth --- p.126 / Chapter 5.3.2 --- DTPA-extractable heavy metals --- p.133 / Chapter 5.3.3 --- Heavy metal uptake by the shoot portion --- p.138 / Chapter 5.3.4 --- Heavy metal uptake by the root portion --- p.147 / Chapter 5.3.5 --- Comparing metal uptake between shoot and root portions --- p.151 / Chapter 5.3.6 --- Chemical properties of substrates --- p.155 / Chapter 5.4 --- Discussion --- p.157 / Chapter 5.4.1 --- Effect of sludge and lime treatments on pH --- p.158 / Chapter 5.4.2 --- Patterns of DTPA-extractable metals and plant uptake --- p.159 / Chapter 5.4.2.1 --- Variation of heavy metal levels with liming rates --- p.160 / Chapter 5.4.2.2 --- Variation of heavy metal levels with sludge loading rates --- p.161 / Chapter 5.4.2.3 --- Bermudagrass as metal accumulator --- p.162 / Chapter 5.4.3 --- Metal uptake by the root and shoot --- p.162 / Chapter 5.4.3.1 --- Antagonistic interactions --- p.163 / Chapter 5.4.3.2 --- Parititioning of heavy metals in shoot and root --- p.163 / Chapter 5.4.4 --- Poor biomass growth --- p.166 / Chapter 5.4.4.1 --- Heavy metal toxicity --- p.166 / Chapter 5.4.4.2 --- Effect of poor soil conditions --- p.167 / Chapter 5.5 --- Conclusions --- p.177 / Chapter Chapter 6 --- Conclusions / Chapter 6.1 --- Summary of findings --- p.179 / Chapter 6.2 --- Implications of the study --- p.180 / Chapter 6.3 --- Limitations --- p.182 / Chapter 6.4 --- Suggestions for further studies --- p.184 / References --- p.186 / Appendix
|
2 |
PLANT GROWTH REGULATOR IN MUNICIPAL WASTEWATERWilson, John R. (John Robert), 1936- January 1982 (has links)
No description available.
|
3 |
Potential use of sludge in slope bioengineering: environmental considerations.January 2007 (has links)
Lam, Shu Kee. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 206-219). / Abstracts in English and Chinese. / Abstract --- p.i / Abstract (in Chinese) --- p.iv / Acknowledgements --- p.vi / Table of contents --- p.vii / List of tables --- p.xii / List of figures --- p.xvi / List of plates --- p.xvii / Chapter CHAPTER 1 --- INTRODUCTION / Chapter 1.1 --- Research background --- p.1 / Chapter 1.2 --- Conceptual framework --- p.4 / Chapter 1.3 --- Objectives of the study --- p.8 / Chapter 1.4 --- Significance of the study --- p.9 / Chapter 1.5 --- Organization of the thesis --- p.10 / Chapter CHAPTER 2 --- LITERATURE REVIEW / Chapter 2.1 --- Introduction --- p.12 / Chapter 2.2 --- Use of hydroseeding in slope bioengineering works --- p.12 / Chapter 2.3 --- Problems associated with hydroseeded slopes --- p.12 / Chapter 2.4 --- Common Bermudagrass used in hydroseeding --- p.13 / Chapter 2.5 --- "Sludge disposal, potentials and problems" --- p.14 / Chapter 2.5.1 --- Properties and disposal of sludge --- p.14 / Chapter 2.5.2 --- Use of sludge and potential problems --- p.16 / Chapter 2.5.3 --- Heavy metals in sludge --- p.19 / Chapter 2.5.3.1 --- Cadmium --- p.22 / Chapter 2.5.3.2 --- Chromium --- p.22 / Chapter 2.5.3.3 --- Copper --- p.23 / Chapter 2.5.3.4 --- Nickel --- p.24 / Chapter 2.5.3.5 --- Lead --- p.24 / Chapter 2.5.3.6 --- Zinc --- p.25 / Chapter 2.5.4 --- Speciation of heavy metals --- p.25 / Chapter 2.5.5 --- Factors affecting the bioavailability of heavy metals --- p.26 / Chapter 2.5.5.1 --- Reaction pH --- p.26 / Chapter 2.5.5.2 --- Organic matter --- p.28 / Chapter 2.5.5.3 --- Fertilizers --- p.29 / Chapter 2.5.6 --- Effect of heavy metals on plant growth --- p.29 / Chapter 2.5.7 --- Effect of heavy metals on animals and water bodies --- p.31 / Chapter 2.6 --- "Lime, heavy metals and plant growth" --- p.32 / Chapter 2.6.1 --- Effect of lime on heavy metal dynamics --- p.32 / Chapter 2.6.1.1 --- Competition with heavy metals for adsorption sites --- p.32 / Chapter 2.6.1.2 --- Immobilization of heavy metals --- p.32 / Chapter 2.6.2 --- Effect of lime on plant growth --- p.34 / Chapter 2.7 --- Effect of precipitation on slopes --- p.35 / Chapter 2.7.1 --- Infiltration --- p.35 / Chapter 2.7.2 --- Surface runoff --- p.38 / Chapter 2.7.3 --- Soil erosion --- p.39 / Chapter 2.8 --- Summary --- p.42 / Chapter CHAPTER 3 --- EFFECT OF SLUDGE AND LIME ON ABOVEGROUND BIOMASS OF COMMON BERMUDAGRASS / Chapter 3.1 --- Introduction --- p.43 / Chapter 3.2 --- Materials and methods --- p.44 / Chapter 3.2.1 --- Materials --- p.45 / Chapter 3.2.2 --- Experimental design --- p.46 / Chapter 3.2.3 --- Grass clipping and pre-treatment --- p.49 / Chapter 3.3 --- Chemical analysis --- p.50 / Chapter 3.3.1 --- Properties of decomposed granite --- p.50 / Chapter 3.3.2 --- "Properties of sludge," --- p.52 / Chapter 3.3.3 --- Nitrogen of grass clippings --- p.52 / Chapter 3.4 --- Statistical analysis --- p.53 / Chapter 3.5 --- Results and discussion --- p.54 / Chapter 3.5.1 --- Properties of DG and sludge --- p.54 / Chapter 3.5.2 --- Aboveground biomass of grass --- p.56 / Chapter 3.5.3 --- Effect of sludge on aboveground biomass --- p.63 / Chapter 3.5.4 --- Effect of lime on aboveground biomass --- p.66 / Chapter 3.5.5 --- Synergic effect of sludge and lime on aboveground biomass --- p.68 / Chapter 3.5.6 --- "Effect of sludge on nitrogen uptake by grass shoots," --- p.69 / Chapter 3.6 --- Summary --- p.72 / Chapter CHAPTER 4 --- EFFECT OF SLUDGE AND LIME ON HEAVY METAL UPTAKE BY COMMON BERMUDAGRASS / Chapter 4.1 --- Introduction --- p.74 / Chapter 4.2 --- Materials and methods --- p.77 / Chapter 4.2.1 --- Materials and experimental design --- p.77 / Chapter 4.2.2 --- Analysis of heavy metals in grass shoots --- p.77 / Chapter 4.2.3 --- Reaction pH at the end of Part 1 --- p.77 / Chapter 4.2.4 --- Statistical analysis --- p.78 / Chapter 4.3 --- Results and discussion --- p.78 / Chapter 4.3.1 --- Cumulative uptake of heavy metals by common Bermudagrass --- p.79 / Chapter 4.3.2 --- Effect of sludge on heavy metal uptake --- p.84 / Chapter 4.3.3 --- Effect of lime on heavy metal uptake --- p.86 / Chapter 4.3.4 --- Synergic effect of sludge and lime on cumulative heavy metal uptake --- p.88 / Chapter 4.3.5 --- Effect of fertilizer addition --- p.91 / Chapter 4.3.6 --- Concentration of heavy metals in grass --- p.93 / Chapter 4.3.7 --- Effect of pH on heavy metal uptake --- p.98 / Chapter 4.3.8 --- Effect of heavy metal uptake on aboveground biomass --- p.100 / Chapter 4.4 --- Summary --- p.103 / Chapter CHAPTER 5 --- EFFECT OF SLUDGE AND LIME ON HEAVY METALS IN LEACHATE / Chapter 5.1 --- Introduction --- p.106 / Chapter 5.2 --- Materials and methods --- p.107 / Chapter 5.2.1 --- Leachate collection --- p.108 / Chapter 5.2.2 --- Analysis of leachate --- p.109 / Chapter 5.2.3 --- Statistical analysis --- p.109 / Chapter 5.3 --- Results and discussion --- p.110 / Chapter 5.3.1 --- Effect of sludge and lime on leachate volume --- p.110 / Chapter 5.3.2 --- Leachate pH and the effect of sludge and lime --- p.115 / Chapter 5.3.3 --- Heavy metal contents in leachate --- p.119 / Chapter 5.3.4 --- Effect of sludge and lime on the leaching of heavy metals --- p.121 / Chapter 5.3.5 --- Effect of pH on the leaching of heavy metals --- p.125 / Chapter 5.4 --- Summary --- p.126 / Chapter CHAPTER 6 --- "LEACHATE, SURFACE RUNOFF, SEDIMENT YIELD AND THEIR HEAVY METALS" / Chapter 6.1 --- Introduction --- p.128 / Chapter 6.2 --- Materials and methods --- p.130 / Chapter 6.2.1 --- Materials --- p.130 / Chapter 6.2.2 --- Experimental design --- p.132 / Chapter 6.2.3 --- Rainfall intensities in simulation experiment --- p.134 / Chapter 6.2.4 --- Selection of slope gradient --- p.136 / Chapter 6.2.5 --- Rainfall simulation --- p.136 / Chapter 6.2.6 --- "Leachate, surface runoff and runoff sediment" --- p.137 / Chapter 6.2.7 --- Properties of decomposed granite and sludge --- p.138 / Chapter 6.2.8 --- "Heavy metals in leachate, surface runoff and runoff sediment" --- p.139 / Chapter 6.2.9 --- Statistical analysis --- p.140 / Chapter 6.3 --- Results and discussion --- p.140 / Chapter 6.3.1 --- Properties of DG and sludge --- p.140 / Chapter 6.3.2 --- "Leachate, surface runoff and runoff sediment production" --- p.142 / Chapter 6.3.3 --- "Heavy metal concentrations in leachate, surface runoff and runoff sediment" --- p.153 / Chapter 6.3.3.1 --- Heavy metal concentrations in leachate --- p.153 / Chapter 6.3.3.2 --- Heavy metal concentrations in runoff --- p.163 / Chapter 6.3.4 --- Cumulative loss of heavy metals --- p.170 / Chapter 6.3.4.1 --- Cumulative loss of heavy metals from leachate --- p.170 / Chapter 6.3.4.2 --- Cumulative loss of heavy metals from runoff --- p.178 / Chapter 6.3.4.3 --- "Heavy metal loss from leachate, surface runoff and runoff sediment" --- p.185 / Chapter 6.4 --- Summary --- p.189 / Chapter CHAPTER 7 --- CONCLUSIONS / Chapter 7.1 --- Summary of major findings --- p.192 / Chapter 7.2 --- Implications of the study --- p.196 / Chapter 7.2.1 --- Potential use of sludge in slope bioengineering works --- p.196 / Chapter 7.2.2 --- Measures to optimize the benefits of sludge in land application --- p.198 / Chapter 7.3 --- Limitations of the study --- p.200 / Chapter 7.4 --- Suggestions for further study --- p.202 / REFERENCES --- p.206 / APPENDICES --- p.220
|
Page generated in 0.0478 seconds