• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Propriedade de Bernoulli para bilhares hiperbólicos com fronteiras focalizadoras quase planas / Bernoulli property for hyperbolic billiards with nearly flat focusing boundaries.

Andrade, Rodrigo Manoel Dias 09 October 2015 (has links)
Neste trabalho, mostramos que os bilhares hiperbólicos construídos originalmente por Bussolari- Lenci têm a propriedade de Bernoulli. Tais bilhares não satisfazem as técnicas standard de Wojtkowski-Markarian-Donnay-Bunimovich para bilhares focalizadores hiperbólicos, a qual requer que o diâmetro da mesa do bilhar seja de mesma ordem que o maior raio de curvatura ao longo da componente focalizadora. Nossa prova, utiliza um teorema ergódico local que nos diz que sob certas condições, existe um conjunto de medida total do espaço de fase do bilhar tal que cada ponto desse conjunto possui uma vizinhança contida (mod 0) em uma componente Bernoulli da aplicação do bilhar. / In this work, we show that hyperbolic billiards constructed originally by Bussolari-Lenci has the Bernoulli property. These billiards do not satisfy the standard Wojtkowski-Markarian-Donnay- Bunimovich technique for the hyperbolicity of focusing or mixed billiards in the plane, which requires the diameter of a billiard table to be of the same order as the largest ray of curvature along the focusing boundary. Our proof employs a locally ergodic theorem which says that under a few conditions, there exists a full measure set of the billiard phase space such that each of its points has a neighborhood contained, up to a zero measure set, in one Bernoulli component of the billiard map.
2

Propriedade de Bernoulli para bilhares hiperbólicos com fronteiras focalizadoras quase planas / Bernoulli property for hyperbolic billiards with nearly flat focusing boundaries.

Rodrigo Manoel Dias Andrade 09 October 2015 (has links)
Neste trabalho, mostramos que os bilhares hiperbólicos construídos originalmente por Bussolari- Lenci têm a propriedade de Bernoulli. Tais bilhares não satisfazem as técnicas standard de Wojtkowski-Markarian-Donnay-Bunimovich para bilhares focalizadores hiperbólicos, a qual requer que o diâmetro da mesa do bilhar seja de mesma ordem que o maior raio de curvatura ao longo da componente focalizadora. Nossa prova, utiliza um teorema ergódico local que nos diz que sob certas condições, existe um conjunto de medida total do espaço de fase do bilhar tal que cada ponto desse conjunto possui uma vizinhança contida (mod 0) em uma componente Bernoulli da aplicação do bilhar. / In this work, we show that hyperbolic billiards constructed originally by Bussolari-Lenci has the Bernoulli property. These billiards do not satisfy the standard Wojtkowski-Markarian-Donnay- Bunimovich technique for the hyperbolicity of focusing or mixed billiards in the plane, which requires the diameter of a billiard table to be of the same order as the largest ray of curvature along the focusing boundary. Our proof employs a locally ergodic theorem which says that under a few conditions, there exists a full measure set of the billiard phase space such that each of its points has a neighborhood contained, up to a zero measure set, in one Bernoulli component of the billiard map.
3

Uniqueness and Mixing Properties of Equilibrium States

Call, Benjamin 02 September 2022 (has links)
No description available.

Page generated in 0.0607 seconds