• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cellular factors that affect table grape berry firmness

Du Plessis, Beatrix W. 03 1900 (has links)
Thesis (MscAgric (Viticulture and Oenology))--Stellenbosch University, 2008. / The South African table grape industry is under great pressure to produce table grapes of the best quality for the export markets. Quality defects such as poor colour, inadequate berry firmness, browning and soft tissue breakdown cause great losses in export. The firmness of table grapes is one of the major factors determining the eating quality of grapes. Consumers prefer grapes with a firmer flesh above those with soft flesh. Firmer berries are commonly accepted to have better eating quality and longer cold storage capacity. Factors that promote and maintain berry firmness are only speculated about; therefore producers cannot effectively control the development of firmer berries by managerial practises or by applying specific sprays. The study was done on Redglobe and two Waltham Cross clones (the firmer Clone 8 and softer Clone 13). The aim of this study was two-fold. Firstly the cellular and ultracellular differences between the tissues of firm and soft berries were determined. The effect of gibberellic acid (GA3), synthetic cytokinin (CPPU) and bunch applied calcium sprays on the cellular and ultracellular structure of berry tissues were also under investigation. Secondly, the effects of GA3, CPPU and bunch directed calcium sprays on berry firmness, eating quality and storage capacity were determined. To determine the cellular and ultracelular structure of berry tissues, light microscope (LM) and transmission electron (TEM) studies were done. In order to investigate the effect of different sprays on berry firmness, 20 mg/L GA3 (GA3 treatment) was applied at 10mm average berry size; 20 mg/L GA3 plus 3 mg/L CPPU (CPPU treatment) was applied at 10 mm average berry size; and a mixture of 8 L/ha Stopit® and 5 L/ha Caltrac® (calcium treatment) was applied directly to the bunches every two weeks from berry set till veraison for the calcium treatments. The control received no plant bioregulators (PBR’s). The treatments were the same for both cultivars. Grapes were stored three weeks at 0 °C and one week at 10 °C after which it was evaluated for loose berries, botrytis infections, rachis browning and berry split. Afterwards it was tasted by an independent tasting panel. Firm berries were found to have an opaque coloured flesh while soft berries had a gel-like translucent flesh. For berries with normal firmness, the opaque flesh is limited to the outer mesocarp of the berry. Extremely firm berries’ whole mesocarp consisted of the opaque coloured flesh while soft berries’ mesocarp consisted of mostly the gel-like translucent flesh with, in some cases, a very thin layer of opaque flesh just under the skin. Berry firmness was not related to cell size as the cell size of the tissues in the firm and soft berries were identical. Cell shape seems to play an important role in berry firmness. The cells in the opaque coloured flesh of the outer mesocarp are more turgid and oval than those in the gel-like flesh of the inner mesocarp. Berry firmness is therefore determined by the thickness of the outer mesocarp with the opaque coloured flesh that contains turgid cells. The thickness of cell walls between the different tissues did not differ. There was however a difference between the cell contents and the plasmalemmas of the inner and outer mesocarp. The plasmalemma and tonoplast of the outer mesocarp cells was more intact than those of the inner mesocarp. The membranes in the inner mesocarp are more subtracted form the cell wall than in the outer mesocarp. Both the PBR’s and calcium treatments cause a delay in sugar accumulation in the case of Redglobe and Waltham Cross. The CPPU treatment results in significantly bigger and firmer berries for both cultivars. In the case of Redglobe, this treatment cause bigger cells in the outer mesocarp suggesting a correlation between berry firmness and cell size. In the case of Waltham Cross, however, cell size did not play a role in berry size and firmness; instead the rate of cell division earlier in berry development. The CPPU treatment was the only treatment that maintains berry firmness during cold storage for Redglobe while GA3 and CPPU did so in the case of Waltham Cross. PBR’s seems to have no effect on cell wall thickness. In the case of Redglobe, the calcium treatments resulted in significantly thinner cell walls, but this can not be explained. Calcium and GA3 treatments had a negative effect on grape quality after cold storage of both Redglobe and Waltham Cross. The Waltham Cross CPPU treatment results in better taste and colour as observed by the tasting panel, while in the case of Redglobe, the tasting panel preferred the control. It is found that the use of CPPU in combination with GA3 had the best effect on the eating quality, storage capacity, berry size and firmness. When a producer decides to use the CPPU treatment in order to improve berry firmness, he must realize that it can cause delayed ripening which can affect the export of the fruit.

Page generated in 0.0638 seconds