• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular and Biochemical Investigations into VMD2, the gene associated with Best Disease / Molekulare und biochemische Untersuchungen zur Charakterisierung des Morbus Best Gens, VMD2

Krämer, Franziska January 2003 (has links) (PDF)
Best disease (OMIM 153700) is an early-onset, autosomal dominant maculopathy characterized by egg yolk-like lesions in the central retina. The disease gene, the vitelliform macular dystrophy gene type 2 (VMD2), encodes a 585-aa VMD2 transmembrane protein, termed bestrophin. The protein is predominantly expressed on the basolateral side of the retinal pigment epithelium (RPE) and is thought to be involved in the transport of chloride ions. Bestrophin as well as three closely related VMD2-like proteins (VMD2L1-L3) contain multiple putative transmembrane (TM) domains and an invariant tripeptide (RFP) motif in the N-terminal half of the protein. This and the tissue-restricted expression to polarized epithelial cells are typical features of the VMD2 RFP-TM family. Best disease is predominantly caused by missense mutations, clustering in four distinct „hotspots“ in the evolutionary highly conserved N-terminal region of the protein. To further augment the spectrum of mutations and to gain novel insights into the underlying molecular mechanisms, we screened VMD2 in a large cohort of affected patients. In total, nine novel VMD2 mutations were identified, raising the total number of known Best disease-related mutations from 83 to 92. Eight out of nine novel mutations are hotspot-specific missense mutations, underscoring their functional/structural significance and corroborating the dominant-negative nature of the mutations. Of special interest is a one-basepair deletion (Pro260fsX288) encoding a truncated protein with a deletion of an important functional domain (TM domain four) as well as the entire C-terminal half of bestrophin. For the first time, a nonsense mutation leading to a 50 % non-functional protein has been identified suggesting that on rare occassions Best disease may be caused by haploinsufficiency. Molecular diagnostics strongly requires a reliable classification of VMD2 sequence changes into pathogenic and non-pathogenic types. Since the molecular pathomechanism is unclear at present, the pathogenicity of novel sequence changes of VMD2 are currently assessed in light of known mutations. We therefore initiated a publicly accessible VMD2 mutation database (http://www.uni-wuerzburg.de/humangenetics/vmd2.html) and are collecting and administrating the growing number of mutations, rare sequence variants and common polymorphisms. Missense mutations may disrupt the function of proteins in numerous ways. To evaluate the functional consequences of VMD2 mutations in respect to intracellular mislocalization and/or protein elimination, a set of molecular tools were generated. These included the establishment of an in vitro COS7 heterologous expression assay, the generation of numerous VMD2 mutations by site-directed mutagenesis as well as the development of bestrophin-specific antibodies. Surprisingly, membrane fractionation/Western blot experiments revealed no significant quantitative differences between intact and mutant bestrophin. Irrelevant of the type or location of mutation, incorporation of mutant bestrophin to the membraneous fraction was observed. Thus, impaired membrane integration may be ruled out as causative pathomechanism of Best disease consistent with a dominant-negative effect of the mutations. In a different approach, efforts were directed towards identifying and characterizing the VMD2 RFP-TM protein family in mouse. While clarification of the genomic organization of murine Vmd2 was required as basis to generate Vmd2-targeted animals (see below), the study of closely related proteins (Vmd2L1, Vmd2L2 and Vmd2L3) may provide further clues as to the function of bestrophin. For this, biocomputational as well as RT PCR analyses were performed. Moreover, the novel genes were analyzed by real time quantitative RT PCR, displaying predominant expression in testis, colon and skeletal muscle of Vmd2, Vmd2L1 and Vmd2L3 transcripts, respectively as well as in eye tissue. Interestingly, neither an ORF was determined for murine Vmd2L2 nor was the transcript present in a panel of 12 mouse tissues, suggesting that murine Vmd2L2 may represent a functionally inactive pseudogene. The murine Vmd2L3 gene, as its human counterpart, is a highly differentially spliced transcript. Finally, generating mouse models of Best disease will provide essential tools to investigate the pathophysiology of bestrophin in vivo. We have initiated the generation of two different mouse lineages, one deficient of Vmd2 (knock-out) and the other carrying a human disease-related mutation (Tyr227Asn) in the orthologous murine gene (knock-in). Genetic engineering of both constructs has been achieved and presently, four ES clones harboring the homologous recombination event (Vmd2+/-) have been isolated and are ready for the subsequent steps to generate chimeric animals. The resulting mouse lineages will represent two key models to elucidate the functional role of bestrophin in Best disease, in RPE development and physiology. / Morbus Best (OMIM 153700) ist eine autosomal dominant vererbte Makulopathie mit juvenilem Beginn. Charakteristisch sind Eidotter-ähnliche Läsionen im zentralen Bereich der Retina. Das krankheitsverursachende Gen, das vitelliforme Makuladystrophie-Gen Typ 2 (VMD2), kodiert für ein 585 Aminosäuren langes Transmembranprotein. Das als Bestrophin bezeichnete Protein ist vorwiegend auf der basolateralen Seite des retinalen Pigmentepithels (RPE) exprimiert und wahrscheinlich am Transport von Chloridionen beteiligt. Bestrophin wie auch die drei eng-verwandten VMD2-ähnlichen Proteine (VMD2L1-L3) gehören zur Familie der VMD2 RFP-TM Proteine und sind durch putative Transmembrandomänen (TM) und ein invariantes Tripeptid (RFP) gekennzeichnet. Morbus Best wird hauptsächlich durch „missense“ Mutationen verursacht die in vier Bereichen („hotspots“) akkumulieren. Um das Mutationsspektrum zu erweitern und darüber hinaus den zugrundeliegenden molekularen Mechanismus weitergehend aufzuklären, wurde das VMD2 Gen in betroffenen Patienten untersucht. Insgesamt wurden neun bisher nicht beschriebene Mutationen identifiziert, wodurch sich die Anzahl der bekannten krankheitsassoziierten Mutationen auf 92 erhöhte. Wie die meisten der bisher bekannten Mutationen befinden sich acht „missense“ Mutationen in den sogenannten „hotspots“ des Gens. Dies unterstreicht die funktionelle bzw. strukturelle Bedeutung der betroffenen Regionen sowie den dominant-negativen Effekt der Mutationen. Bemerkenswert ist eine atypische 1-Basenpaar-Deletion (Pro260fsX288) in Exon 7. Denn erstmals wurde eine „nonsense“ Mutation im VMD2 Gen identifiziert, die 50 % nicht-funktionelles Protein zur Folge hat. In seltenen Fällen scheint daher die durch „nonsense“ Mutationen bedingte Haploinsuffizienz der Krankheit zugrunde liegen. Die molekulare Diagnostik verlangt eine zuverlässliche Einteilung der VMD2 Sequenzänderungen in pathogene und nicht-pathogene Gruppen. Da der molekulare Pathomechanismus zurzeit weitgehend ungeklärt ist, wird die Pathogenität neuer Sequenzänderungen aufgrund bereits bekannter Mutationen eingestuft. Es wurde daher eine öffentlich zugängliche VMD2 Mutationsdatenbank eingerichtet (http://www.uni-wuerzburg.de/humangenetics/vmd2.html), in der die wachsende Zahl an Mutationen, Sequenzvarianten und Polymorphismen gesammelt und verwaltet wird. „Missense“ Mutationen können die Proteinfunktion auf verschiedene Weise beeinträchtigen. Geeignete molekulare Assays wurden daher etabliert, um die funkionellen Auswirkungen der VMD2 Mutationen in Hinblick auf die intrazelluläre Lokalisation zu untersuchen. In der vorliegenden Arbeit wurde ein heterologes COS7 Expressionssystem entwickelt, es wurden verschiedene Mutationen mittels „site-directed mutagenesis“ generiert sowie Bestrophin-spezifische Antikörper hergestellt. Überraschenderweise konnte anhand von Membranfraktionierungs- und Westernblot-Analysen keine signifikanten quantitativen Unterschiede zwischen intakten und mutierten Bestrophin nachgewiesen werden. Unabhängig von Art oder Position der Mutation konnte der Einbau von mutiertem Bestrophin in die Membran gezeigt werden. Die Experimente deuten erstmalig darauf hin daß eine fehlerhafte Membranintegration als kausaler krankheitsverursachender Mechanismus ausgeschlossen werden kann. Dies liegt in Übereinstimmung mit dem dominant-negativen Effekt der Mutationen. In einem alternativen Ansatz wurde die VMD2 RFP-TM Proteinfamilie im Mausgenom identifiziert und charakterisiert. Während die Aufklärung der genomischen Struktur des Vmd2 Gens die Grundlage zur Herstellung Vmd2 transgener Mäuse darstellte (siehe unten), gewährte die Charakterisierung der eng verwandten Vmd2L1-L3 Mausgene weitere Einblicke in die Funktion des Bestrophins. Hierzu wurden bioinformatische sowie RT PCR Analysen durchgeführt. Darüber hinaus wurde die präferientielle Expression der jeweiligen Transkripte in Testis, Kolon und Skelettmuskel sowie Augengewebe anhand von „real-time quantitative“ RT PCR nachgewiesen. Interessanterweise stellt Vmd2L2 wahrscheinlich ein funktionell inaktives Pseudogen dar. Ähnlich wie sein humanes Gegenstück wird das Maus Vmd2L3- Transkript auf mRNA Ebene differentiell prozessiert. Mausmodelle für Morbus Best stellen grundlegende Hilfsmittel dar, die Pathophysiology von Bestrophin in vivo zu untersuchen. Es wurde die Herstellung zweier verschiedener Mauslinien initiiert: zum einen ein Vmd2-defizientes „knock-out“ Modell, zum anderen eine „knock-in“ Maus, die eine humane krankheitsassoziierte Mutation (Tyr227Asn) im mausorthologen Gen trägt. Die entsprechenden Konstrukte wurden hergestellt und in ES Zellen eingeschleust. Ausgehend von bislang vier isolierten ES Klonen, die den Vmd2+/- Genotyp tragen, können nun in nachfolgenden Schritten chimäre Tiere generiert werden. Die resultierenden Mauslinien repräsentieren neue experimentelle Ansätze, die funktionelle Rolle des Bestrophins in Morbus Best sowie in der Entwicklung und Physiologie des RPEs aufzukären.
2

Molecular and biochemical investigations into VMD2, the gene associated with Best disease

Krämer, Franziska. January 2003 (has links) (PDF)
Würzburg, Univ., Diss., 2003.
3

Cellular role of the putative Ca 2+ -dependent Cl - channel bestrophin

Barro Soria, René January 2008 (has links)
Regensburg, Univ., Diss., 2008

Page generated in 0.0296 seconds