• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study of the H-alpha Emission Line Shape in Beta Lyrae

Magno, Macon, Ignace, Richard 05 April 2018 (has links)
Beta Lyrae is a complex binary star system with a 13-day orbital period containing two massive stars that are in the process of mass reversal accretion. The primary star is the higher mass star which is gaining mass from the secondary star. This reversal mass accretion causes gas to build and form a disk around the primary star. The disk is geometrically and optically thick. Previous interferometric studies in Optical and Infrared wavelengths have shown that a bipolar jet exists in the system and suggest that the jet contributes to the H-alpha emission. Meanwhile, other studies have suggested that the disk contributes to the H-alpha emission. We have taken into account various factors to model the emission of H-alpha from Beta Lyrae. The observed profile is double-peaked and varies with orbital phase. We found that the jet produces a single-peak for H-alpha emission. Meanwhile, the disk produces a double-peak for H-alpha emission if it is based on Keplerian motion. We use our model to interpret the observed H-alpha emission variations in the line shape with orbital phase.
2

Phase-Dependent X-ray Observations of the beta Lyrae System: No eclipse in the soft band.

Ignace, Richard, Oskinova, L., Waldron, W., Hoffman, J., Hamann, W.-R. 01 January 2008 (has links) (PDF)
Aims.We report on observations of the eclipsing and interacting binary beta Lyrae from the Suzaku X-ray telescope. This system involves an early B star embedded in an optically and geometrically thick disk that is siphoning atmospheric gases from a less massive late B II companion. Methods.Motivated by an unpublished X-ray spectrum from the Einstein X-ray telescope suggesting unusually hard emission, we obtained time with Suzaku for pointings at three different phases within a single orbit. Results.From the XIS detectors, the softer X-ray emission appears typical of an early-type star. What is surprising is the remarkably unchanging character of this emission, both in luminosity and in spectral shape, despite the highly asymmetric geometry of the system. We see no eclipse effect below 10 keV. The constancy of the soft emission is plausibly related to the wind of the embedded B star and Thomson scattering of X-rays in the system, although it might be due to extended shock structures arising near the accretion disk as a result of the unusually high mass-transfer rate. There is some evidence from the PIN instrument for hard emission in the 10-60 keV range. Follow-up observations with the RXTE satellite will confirm this preliminary detection.

Page generated in 0.0469 seconds