• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Shape-preserving Interpolation with Biarcs and NURBS

Anant, Unmesh 09 April 2010 (has links)
Non-Uniform Rational B-Splines (NURBS) curve has acquired great significance in the field of Computer Aided Design and Machining due to their ability to draw a large variety of shapes in an interactive computer graphics environment. A biarc curve is a composition of two circular arcs such that they are tangent continuous at the point of join. Biarcs have replaced traditionally used line segments in approximating curves and surfaces for generating tool paths of Computerised cutting machines called CNC (Computerised Numerical Controlled) machines. This is due to their ability to be at a greater proximity to the original curve with fewer number of segments. Since most of the machining tools can move only in straight lines and circular arcs, it is desirable that the tool paths be composed of biarcs and/or straight line segments. Shape preserving interpolation is a technique of drawing a curve through a set of points such that the shape represented by the data points are preserved. Both NURBS and biarc curves are not essentially shape preserving curves; however, if certain constraints are imposed on them, they are able to preserve the shape represented by the data points. This work proposes a technique that incorporates both NURBS and biarcs to perform the interpolation. The advantages are twofold; it acts as a common platform for the two techniques to operate together, which is novel, and the fitted NURBS curve can be approximated by biarcs, which has applications in the machining industry.
2

Shape-preserving Interpolation with Biarcs and NURBS

Anant, Unmesh 09 April 2010 (has links)
Non-Uniform Rational B-Splines (NURBS) curve has acquired great significance in the field of Computer Aided Design and Machining due to their ability to draw a large variety of shapes in an interactive computer graphics environment. A biarc curve is a composition of two circular arcs such that they are tangent continuous at the point of join. Biarcs have replaced traditionally used line segments in approximating curves and surfaces for generating tool paths of Computerised cutting machines called CNC (Computerised Numerical Controlled) machines. This is due to their ability to be at a greater proximity to the original curve with fewer number of segments. Since most of the machining tools can move only in straight lines and circular arcs, it is desirable that the tool paths be composed of biarcs and/or straight line segments. Shape preserving interpolation is a technique of drawing a curve through a set of points such that the shape represented by the data points are preserved. Both NURBS and biarc curves are not essentially shape preserving curves; however, if certain constraints are imposed on them, they are able to preserve the shape represented by the data points. This work proposes a technique that incorporates both NURBS and biarcs to perform the interpolation. The advantages are twofold; it acts as a common platform for the two techniques to operate together, which is novel, and the fitted NURBS curve can be approximated by biarcs, which has applications in the machining industry.

Page generated in 0.0237 seconds