• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation on the deformation mechanism of bi-crystal Cu thin film after the indentation and scratch by molecular statics method

Chiang, Hsing-jung 20 August 2009 (has links)
The mechanical properties and the deformation mechanism of Cu single crystal metal and bi-crystal Cu metals are explored by the molecular statics simulations for the nanoindentation and nanoscratching process. In the simulation of nanoindentation, the relationship of load, influenced depth and displacement are obtained to investigate the deformation mechanism of Cu metals. The variations of averaged bond length are used to understand condition of atoms deformation. For the nanoindentation on two single crystal surfaces, our results indicate that the influenced depths can be affected by the tip indentation and the motion of dislocations. In the case of the bi-crystal system, because the interfaces between two crystal orientations can provide the resistance to the motions of dislocation, the influenced depths can be affected by the existence of the interface. Eventually, the variations of averaged bond length are also used to explore the structural deformation under the different nanoindentation depths and nanoscratching distances during the nanoscratching process. Moreover, the deformation mechanism during nanoindentation and nanoscratching process are also discussed in this article.
2

Kinetics of Void Nucleation and Growth at Grain Boundaries on Shock Loaded Copper Bicrystals

January 2020 (has links)
abstract: Shock loading produces a compressive stress pulse with steep gradients in density, temperature, and pressure that are also often modeled as discontinuities. When a material is subject to these dynamic (shock) loading conditions, fracture and deformation patterns due to spall damage can arise. Spallation is a dynamic material failure that is caused by the nucleation, growth, and coalescence of voids, with possible ejection of the surface of the material. Intrinsic defects, such as grain boundaries are the preferred initiation sites of spall damage in high purity materials. The focus of this research is to study the phenomena that cause void nucleation and growth at a particular grain boundary (GB), chosen to maximize spall damage localization. Bicrystal samples were shock loaded using flyer-plates via light gas gun and direct laser ablation. Stress, pulse duration, and crystal orientation along the shock direction were varied for a fixed boundary misorientation to determine thresholds for void nucleation and coalescence as functions of these parameters. Pressures for gas gun experiments ranged from 2 to 5 GPa, while pressures for laser ablation experiments varied from 17 to 25 GPa. Samples were soft recovered to perform damage characterization using electron backscattering diffraction (EBSD) and Scanning Electron Microscopy (SEM). Results showed a 14% difference in the thresholds for void nucleation and coalescence between samples with different orientations along the shock direction, which were affected by pulse duration and stress level. Fractography on boundaries with strong damage localization showed many small voids, indicating they experience rapid nucleation, causing early coalescence. Composition analysis was also performed to determine the effect of impurities on damage evolution. Results showed that higher levels of impurities led to more damage. ABAQUS/Explicit models were developed to simulate flyer-plate impact and void growth with the same crystal orientations and experimental conditions. Results are able to match the damage seen in each grain of the target experimentally. The Taylor Factor mismatch at the boundary can also be observed in the model with the higher Taylor Factor grain exhibiting more damage. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2020
3

Finite Element Simulations of Three-Dimensional Microstructurally Small Fatigue Crack Growth in 7075 Aluminum Alloy Using Crystal Plasticity Theory

Johnston, Stephen R (Stephen Riley) 10 December 2005 (has links)
This thesis discusses plasticity-induced crack closure based finite element simulations of small fatigue cracks in three dimensions utilizing crystal plasticity theory. Previously, modeling has been performed in two dimensions using a double-slip crystal plasticity material model. The goal of this work is to extend that research using a full three-dimensional FCC crystal plasticity material model implementation that accounts for all twelve FCC slip systems. Discussions of Python scripts that were written to perform analyses with the commercial finite element code ABAQUS are given. A detailed description of the modeling methodology is presented along with results for single crystals and bicrystals. The results are compared with finite element and experimental results from the literature. A discussion of preliminary work for the analysis of crack growth around an intermetallic particle is also presented.
4

An Innovative Fabrication Route to Machining Micro-Tensile Specimens Using Plasma-Focused Ion Beam and Femtosecond Laser Ablation and Investigation of the Size Effect Phenomenon Through Mechanical Testing of Fabricated Single Crystal Copper Micro-Tensile Specimens

Huang, Betty January 2023 (has links)
This project is in collaboration with the Hydro-Quebec Research Institute (IREQ) and the Canadian Centre for Electron Microscopy (CCEM) on the mechanical test performance of miniature-scale micro-tensile specimens. The objective of the thesis project is to create an efficient and reliable fabrication route for producing micro-tensile specimens and to validate the accuracy of a newly custom-built micro-tensile bench at IREQ. The fabrication techniques developed and outlined in this thesis use the underlying fundamental physical mechanisms of secondary electron microscopy (SEM), focused-ion beam (FIB), and the femtosecond (fs)-laser machining for producing optimal quality micro-tensile specimens. The mechanical testing of the specimens is geared towards studying the localized deformation occurring in the microstructure when the size of the specimen only limits a number of grains and grain boundaries in order to target the specific detailed measurement of the mechanical behaviour of individual grains and interfaces. The goal for creating an optimal fabrication route for micro-tensile specimens is to carry out micro-mechanical testing of the primary turbine steels of 415 martensitic stainless steel used in the manufacture of Francis turbine components at Hydro-Quebec. The mechanical testing of single phase and interphase interface 415 steel micro-tensile specimens are considered building blocks to developing digital twin models of the steel microstructure. The experimental data from the mechanical tests would be fed into the crystal plasticity finite element models (CPFEM) that are currently being developed by researchers at IREQ. With the development of digital twin models, engineers at IREQ would be able to predict crack initiation at the microstructure level (prior to crack propagation into macro-scale cracks) by observing the evolution of the grain’s crystallographic orientation and morphology, as well as deformation mechanisms such as martensite formation and twinning produced from localized induced strains in the microstructure. In addition, self-organized dislocation processes such as dislocation nucleation and dislocation escape through the free surface can also be studied using the CPFEM models for size-limited mechanical deformation behaviour of miniature-scale mechanical test specimens. The fabrication routes studied in this thesis project use the combination of the fs-laser and plasma focused ion beam (PFIB) to machine the micro-tensile specimens. (100) single crystal copper was the ideal material chosen to validate the accuracy of the micro-tensile bench and quality of the fs-laser-machined tensile specimens, due to its ductile nature and well-characterized properties studied in literature. A mechanical size effect was studied for single crystal copper specimens with different gauge thicknesses. It was observed from the micro-tension testing that the strength of the specimens increased with decreasing gauge thickness occurring in the size-limited tensile gauges. In addition, it was determined there was negligible differences in the size effect seen between the PFIB-machined copper micro-tensile specimens and the fs-laser-machined micro-tensile specimens, demonstrating that the fs-laser is a reliable machining route for the micro-tensile specimens. X-ray computed tomography was used to validate the correct geometry of the machined gauge section produced from an innovative gauge thinning method adopted from IREQ’s research collaborator, Dr. Robert Wheeler. As well, finite-element analysis (FEA) was performed to determine the deformation behaviour under both linear-elastic and non-linear elastoplastic conditions of (100) copper and 415 steel models simulated in pure tension, prior to the fabrication of the micro-tensile specimens, respectively. Furthermore, significant progress has been made towards targeting martensite grains in the 415-steel microstructure using electron backscattered diffraction (EBSD) analysis to produce single crystal and interphase interface micro-tensile specimens. A workflow towards grain targeting using EBSD analysis has been developed, as well as for the relocation of grains using reference fiducial marks for future fabrication of the single crystal and interphase interface 415 micro-tensile specimens. / Thesis / Master of Applied Science (MASc) / Hydro-Quebec is an energy utilities company that operates the design of Francis hydro-turbines to supply hydroelectric power across the province of Quebec. The hydro-turbines have an expected service life of 70 years. Unfortunately, the turbines can get replaced by new ones prior to reaching half of its service life, due to the development of severe fatigue crack growth in the primary components of the turbines. A solution proposed by the researchers at the Hydro-Quebec Research Institute (IREQ) is to determine a linkage between the turbine’s steel’s microstructure and the mechanical behaviour of the turbine steels. Deformation of the material starts at the microstructure level, where dislocations glide through the material lattice, causing both reversible (elastic) and irreversible (plastic) deformation. Therefore, a solution was proposed by the researchers at IREQ to create computational models of the steel microstructure to predict the deformation of the steel’s microstructure. Being able to predict the deformation mechanisms through the simulation models of the microstructures allows for engineers at Hydro-Quebec to schedule regular maintenance of the turbines more efficiently and provide metallurgists the knowledge on what is occurring at the microstructure level and what can be done to improve the chemical and physical composition of the steel. To develop the digital twin models, experimental data must be collected through mechanical testing of miniature mechanical test specimens of the turbine steels. The mechanical properties of the single phases and interphase interface specimens are fed into the models as building blocks to building a microstructure map of the turbine steels. Micro-tension testing of micro-tensile specimen provides direct information about the material’s mechanical properties. In this work, a reliable and efficient fabrication route for micro-tensile specimens was developed for the purpose of extracting mechanical properties of single phase and interphase interface turbine steel specimens using focused ion beam (FIB) and femtosecond laser machining.

Page generated in 0.0291 seconds