• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, Modeling and Control of Bidirectional Resonant Converter for Vehicle-to-Grid (V2G) Applications

Zahid, Zaka Ullah 24 November 2015 (has links)
Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are gaining popularity because they are more environmentally friendly, less noisy and more efficient. These vehicles have batteries can be charged by on-board battery chargers that can be conductive or inductive. In conductive chargers, the charger is physically connected to the grid by a connector. With the inductive chargers, energy can be transferred wirelessly over a large air-gap through inductive coupling, eliminating the physical connection between the charger and the grid. A typical on-board battery charger consists of a boost power factor correction (PFC) converter followed by a dc-dc converter. This dissertation focuses on the design, modeling and control of a bidirectional dc-dc converter for conductive battery charging application. In this dissertation, a detailed design procedure is presented for a bidirectional CLLLC-type resonant converter for a battery charging application. This converter is similar to an LLC-type resonant converter with an extra inductor and capacitor in the secondary side. Soft-switching can be ensured in all switches without additional snubber or clamp circuitry. Because of soft-switching in all switches, very high-frequency operation is possible, thus the size of the magnetics and the filter capacitors can be made small. To further reduce the size and cost of the converter, a CLLC-type resonant network with fewer magnetics is derived from the original CLLLC-type resonant network. First, an equivalent model for the bidirectional converter is derived for the steady-state analysis. Then, the design methodology is presented for the CLLLC-type resonant converter. Design of this converter includes determining the transformer turns ratio, design of the magnetizing inductance based on ZVS condition, design of the resonant inductances and capacitances. Then, the CLLC-type resonant network is derived from the CLLLC-type resonant network. To validate the proposed design procedure, a 3.5 kW converter was designed following the guidelines in the proposed methodology. A prototype was built and tested in the lab. Experimental results verified the design procedure presented. The dynamics analysis of any converter is necessary to design the control loop. The bandwidth, phase margin and gain margin of the control loops should be properly designed to guarantee a robust system. The dynamic analysis of the resonant converters have not been extensively studied, with the previous work mainly concentrated on the steady-state models. In this dissertation, the continuous-time large-signal model, the steady-state operating point, and the small-signal model are derived in an analytical closed-form. This model includes both the frequency and the phase-shift control. Simulation and experimental verification of the derived models are presented to validate the presented analysis. A detailed controller design methodology is proposed in this dissertation for the bidirectional CLLLC-type resonant converter for battery charging application. The dynamic characteristics of this converter change significantly as the battery charges or discharges. And, at some operating points, there is a high-Q resonant peaking in the open-loop bode-plot for any transfer functions in this converter. So, if the controller is not properly designed, the closed-loop system might become unstable at some operating points. In this paper, a controller design methodology is proposed that will guarantee a stable operation during the entire operating frequency range in both battery charging mode (BCM) and regeneration mode (RM). To validate the proposed controller design methodology, the output current and voltage loop controllers are designed for a 3.5 kW converter. The step response showed a stable system with good transient performance thus validating the proposed controller design methodology. / Ph. D.
2

Soft switching bidirectional isolated three-phase DC-DC converter using dual phase-shift control with variable duty cycle / Conversor CC-CC trifÃsico isolado bidirecional com comutaÃÃo suave utilizando dual phase-shift e razÃo cÃclica variÃvel

Herminio Miguel de Oliveira Filho 19 August 2015 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / This work presents the analysis, design example, simulations and experimental results on a soft-switching bidirectional isolated three-phase dc-dc converter using dual phase-shift control with variable duty cycle. The topology uses three single H-bridges in the primary side and a three-phase inverter in the secondary side. High-frequency isolation is ensured by using three single-phase transformers connected in open delta-wye configuration. The variation of both phase-shift (PS) angles between the H-bridge legs and/or primary and secondary sides allows controlling the power flow, while reduced reactive power flow is possible. The variable duty cycle is used to ensure a constant voltage bus and/or zero voltage switching (ZVS) operation. A detailed analysis is presented considering a model based on the fundamental components for the voltages and currents in the transformer and, aiming its validation, a second analysis from the operation stages of the converter has also been developed. Besides, the dynamic model of the converter, based on fundamental components and employing the gyrator theory has been developed. A design example with nominal values assumptions, stresses and specifications for components, discrete control system characterization and its FPGA programming are presented. Simulation and experimental results in steady state and closed-loop performance are presented and discussed to validate the proposed approach. / Este trabalho apresenta a anÃlise, exemplo de projeto, simulaÃÃes e resultados experimentais de um conversor CC-CC trifÃsico isolado bidirecional com comutaÃÃo suave, dual phase shift (DPS) e razÃo cÃclica variÃvel. A topologia utiliza trÃs pontes H monofÃsicas no lado primÃrio e um inversor trifÃsico no lado secundÃrio. A isolaÃÃo em alta frequÃncia à garantida utilizando-se trÃs transformadores monofÃsicos conectados em uma configuraÃÃo delta aberto/estrela. A variaÃÃo de ambos os Ãngulos de deslocamento de fase, entre os braÃos de uma ponte H e/ou entre os lados primÃrio e secundÃrio, permitem o controle do fluxo de potÃncia. Esta flexibilidade garante a obtenÃÃo de um baixo conteÃdo reativo na anÃlise de projeto da topologia. A razÃo cÃclica variÃvel à utilizada para assegurar um barramento constante e uma operaÃÃo dos interruptores com comutaÃÃo suave. Uma anÃlise matemÃtica da estrutura à apresentada considerando um modelo baseado em componentes fundamentais e, com o propÃsito de comprovar a validade deste modelo, uma segunda anÃlise a partir das etapas de operaÃÃo do conversor tambÃm foi desenvolvida. O modelo dinÃmico do conversor, baseado nas componentes fundamentais, tambÃm foi concebido com auxÃlio da teoria do gyrator. Um exemplo de projeto, com a obtenÃÃo de valores nominais, esforÃos e especificaÃÃes dos componentes, caracterizaÃÃo do sistema de controle discreto e sua programaÃÃo atravÃs de FPGA sÃo desenvolvidos. SimulaÃÃes e resultados experimentais do conversor operando em regime permanente e dinÃmico sÃo apresentados para validar o modelo proposto.

Page generated in 0.139 seconds