• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural and enzymatic features of a recombinant β-fructofuranosidase from Bifidobacterium adolescentis / Aspectos estruturais e funcionais de uma β-fructofuranosidase recombinante da Bifidobacterium adolescentis

Mera, Alain Eduard Monsalve 24 August 2016 (has links)
Despite the fact that Glycosyl Hydrolase Family 32 present 4 467 enzyme entries, only 14 of them have been characterized structurally. From the ten protein crystal structures deposited for Bifidobacterium adolescentis ATCC 15703 at PDB just one enzyme is related to the processing of non-digestible sugars and there is no structure of a β-fructofuranosidase. In this research we studied the biochemical properties and the structural features of a recombinant β-fructofuranosidase (BaFFse) from the healthy gut bacteria B. adolescentis ATCC 15703 (gen BAD_1325) heterologously expressed in Escherichia coli Rosetta. The enzyme was purified by nickel ion affinity chromatography and molecular exclusion chromatography; the purification process was judged by denaturing SDS-PAGE gel. Sucrose was used as a substrate for the enzyme activity assays and the amount of reducing sugars, detected by Dinitrosalycilic acid, was taken as indicator of the optimum conditions of hydrolysis for the enzyme. BaFFase crystal, grown in PEG 8K 25% (w/v) and buffer MES 0.1M pH 6.5, was diffracted at 2.44 Å and processed using the CCP4 program package. The enzyme presented a classical four-stranded five-bladed β-propeller and a C-terminal β-sandwich characteristic from the GH 32 family; however, connected to the β-propeller through a loop of 38 residues, BaFFase also presented an N-terminal β-sandwich domain, which sequence (residues 3-100 from BaFFase) did not match with any protein sequence when aligned against PDB database. Assays with Gel filtration calibration, DLS and SAXS showed that the enzyme was a stable homodimer in solution. Based on the superposition of structures using the a β-fructofuranosidase from B. longum KN29.1 we could deduced the three key aminoacids involved in the transferring of fructosyl moieties by BaFFase. A nucleophile attack is performed by the carboxylate of Asp 131, forming the fructose BaFFase intermediate; Glu 375 donates a proton, acting as an acid base catalyst and Asp 269 stabilizes the transitions state in the fructosyl transferring activity. This is the first GH32 oligomeric enzyme belonging to the bacteria kingdom. We have described a novel additional β-sandwich domain for a GH32 enzyme that increases the region of contact to form a dimer. This is the first β-fructofuranosidase crystal structure from the microorganism B. adolescentis ATCC 15703. / O presente trabalho disserta sobre os estudos das propriedades bioquímicas e as características estruturais de uma β-frutofuranosidase recombinante (BaFFse) da bactéria Bifidobacterium adolescentis ATCC 15703 (gen BAD_1325) presente em intestinos saudáveis. A proteína foi expressa heterologamente em Escherichia coli Rosetta. A enzima foi purificada por cromatografia de afinidade (íons de níquel) e cromatografia de exclusão por massa molecular; o processo de purificação foi avaliado por gel desnaturante tipo SDS-PAGE. A sacarose foi usada como substrato para os ensaios de atividade enzimática e a quantidade de açúcares redutores, detectados por ácido dinitrosalicílico, foi tomada como indicador das condições ótimas de hidrólise para a enzima. Cristais de BaFFase, crescidos em solução contendo PEG 8 k em tampão Hepes pH 6,5, foram difratados a uma resolução de 2,44 Å e processados utilizando o pacote de programas CCP4. A enzima apresentou um clássico enovelamento tipo composto por cinco pás de quatro-fitas β cada e um domínio C-terminal sanduíche-β característico da família GH32; no entanto, ligado ao β-propeller, através de um loop de 38 resíduos, a BaFFase apresentou um inédito domínio N-terminal sanduíche-β (resíduos 3-100 de BaFFase) ainda sem precedentes, quando alinhado contra a base de dados PDB. Ensaios de gel filtração, DLS e SAXS mostraram que a enzima se apresenta como um homodímero estável em solução. Com base na superposição estrutural, utilizando uma β-frutofuranosidase de B. longum KN29.1, foi possível inferir os três aminoácidos essenciais envolvidos na transferência de unidades de frutosil pela BaFFase. Um ataque nucleofílico é realizado pelo grupo carboxílico do Asp131, formando um intermediário frutose-BaFFase; o Glu375 doa um próton, atuando como um catalisador ácido-base e o Asp269 estabiliza o estado transições na atividade de transferência frutose. Um novo domínio sanduíche-β adicional para uma enzima GH32 é descrito. Esse domínio é responsável pelo aumento da região de contato e essencial para a formação do homodímero. Esta é a primeira estrutura cristalina da β-frutofuranosidase do microrganismo B. adolescentis ATCC 15703, além de ser a primeira enzima GH32 descrita neste estado oligomérico pertencente ao reino das bactérias.
2

Structural and enzymatic features of a recombinant β-fructofuranosidase from Bifidobacterium adolescentis / Aspectos estruturais e funcionais de uma β-fructofuranosidase recombinante da Bifidobacterium adolescentis

Alain Eduard Monsalve Mera 24 August 2016 (has links)
Despite the fact that Glycosyl Hydrolase Family 32 present 4 467 enzyme entries, only 14 of them have been characterized structurally. From the ten protein crystal structures deposited for Bifidobacterium adolescentis ATCC 15703 at PDB just one enzyme is related to the processing of non-digestible sugars and there is no structure of a β-fructofuranosidase. In this research we studied the biochemical properties and the structural features of a recombinant β-fructofuranosidase (BaFFse) from the healthy gut bacteria B. adolescentis ATCC 15703 (gen BAD_1325) heterologously expressed in Escherichia coli Rosetta. The enzyme was purified by nickel ion affinity chromatography and molecular exclusion chromatography; the purification process was judged by denaturing SDS-PAGE gel. Sucrose was used as a substrate for the enzyme activity assays and the amount of reducing sugars, detected by Dinitrosalycilic acid, was taken as indicator of the optimum conditions of hydrolysis for the enzyme. BaFFase crystal, grown in PEG 8K 25% (w/v) and buffer MES 0.1M pH 6.5, was diffracted at 2.44 Å and processed using the CCP4 program package. The enzyme presented a classical four-stranded five-bladed β-propeller and a C-terminal β-sandwich characteristic from the GH 32 family; however, connected to the β-propeller through a loop of 38 residues, BaFFase also presented an N-terminal β-sandwich domain, which sequence (residues 3-100 from BaFFase) did not match with any protein sequence when aligned against PDB database. Assays with Gel filtration calibration, DLS and SAXS showed that the enzyme was a stable homodimer in solution. Based on the superposition of structures using the a β-fructofuranosidase from B. longum KN29.1 we could deduced the three key aminoacids involved in the transferring of fructosyl moieties by BaFFase. A nucleophile attack is performed by the carboxylate of Asp 131, forming the fructose BaFFase intermediate; Glu 375 donates a proton, acting as an acid base catalyst and Asp 269 stabilizes the transitions state in the fructosyl transferring activity. This is the first GH32 oligomeric enzyme belonging to the bacteria kingdom. We have described a novel additional β-sandwich domain for a GH32 enzyme that increases the region of contact to form a dimer. This is the first β-fructofuranosidase crystal structure from the microorganism B. adolescentis ATCC 15703. / O presente trabalho disserta sobre os estudos das propriedades bioquímicas e as características estruturais de uma β-frutofuranosidase recombinante (BaFFse) da bactéria Bifidobacterium adolescentis ATCC 15703 (gen BAD_1325) presente em intestinos saudáveis. A proteína foi expressa heterologamente em Escherichia coli Rosetta. A enzima foi purificada por cromatografia de afinidade (íons de níquel) e cromatografia de exclusão por massa molecular; o processo de purificação foi avaliado por gel desnaturante tipo SDS-PAGE. A sacarose foi usada como substrato para os ensaios de atividade enzimática e a quantidade de açúcares redutores, detectados por ácido dinitrosalicílico, foi tomada como indicador das condições ótimas de hidrólise para a enzima. Cristais de BaFFase, crescidos em solução contendo PEG 8 k em tampão Hepes pH 6,5, foram difratados a uma resolução de 2,44 Å e processados utilizando o pacote de programas CCP4. A enzima apresentou um clássico enovelamento tipo composto por cinco pás de quatro-fitas β cada e um domínio C-terminal sanduíche-β característico da família GH32; no entanto, ligado ao β-propeller, através de um loop de 38 resíduos, a BaFFase apresentou um inédito domínio N-terminal sanduíche-β (resíduos 3-100 de BaFFase) ainda sem precedentes, quando alinhado contra a base de dados PDB. Ensaios de gel filtração, DLS e SAXS mostraram que a enzima se apresenta como um homodímero estável em solução. Com base na superposição estrutural, utilizando uma β-frutofuranosidase de B. longum KN29.1, foi possível inferir os três aminoácidos essenciais envolvidos na transferência de unidades de frutosil pela BaFFase. Um ataque nucleofílico é realizado pelo grupo carboxílico do Asp131, formando um intermediário frutose-BaFFase; o Glu375 doa um próton, atuando como um catalisador ácido-base e o Asp269 estabiliza o estado transições na atividade de transferência frutose. Um novo domínio sanduíche-β adicional para uma enzima GH32 é descrito. Esse domínio é responsável pelo aumento da região de contato e essencial para a formação do homodímero. Esta é a primeira estrutura cristalina da β-frutofuranosidase do microrganismo B. adolescentis ATCC 15703, além de ser a primeira enzima GH32 descrita neste estado oligomérico pertencente ao reino das bactérias.
3

Estudos biofísicos e estruturais de xilose isomerases para produção de etanol de segunda geração / Structural and biophysical studies of xylose isomerases for production of second generation ethanol

Reis, Caio Vinicius dos 03 August 2012 (has links)
A demanda por combustíveis baseados em recursos renováveis é alta nos dias de hoje e tende a aumentar bastante no futuro. No Brasil, indústrias de biocombustíveis produzem principalmente etanol a partir cana-de-açúcar. A biomassa lignocelulósica, compreendendo resíduos de culturas, resíduos florestais, sólidos urbanos, é explorada como um elevado potencial secundário na produção de biocombustíveis, mesmo na categoria de subprodutos, eliminando assim os usos competitivos. Para tornar a produção de etanol de segunda geração a partir da cana-de-açúcar economicamente sustentável, é imprescindível utilizar fração hemicelulósica da biomassa, o que corresponde de 20% a 25%, sendo a xilose seu principal componente. Saccharomyces cerevisiae não fermenta xilose, entretanto, xilulose pode ser fermentada. Portanto a busca e o estudo de enzimas que procedem com a conversão de xilose em xilulose (em condições sinérgicas às da fermentação alcoólica) se torna de extrema importância no que se refere ao aproveitamento da hemicelulose para a geração de etanol de segunda-geração. Xilose isomerases (XI) de três microorganismos diferentes (de Xanthomonas campestris pv. Campestris [Xyl_Xcc], Bifidobacterium adolescentis [Xyl_Bad] e de Lactobacillus crispatus [Xyl_LCr]) são o objeto de estudo deste projeto. A partir do conteúdo genômico desses três microorganismos, foi realizada a amplificação do gene xylA (que codifica para XI), via Clonagem Independente de Ligação/Ligase (do inglês, LIC) e clonagem em vetor de expressão pPROEX HTa adaptado para LIC, e superexpressão em Escherichia coli BL21 (DE3). As XIs foram então extraídas e purificadas por cromatografia de afinidade com metal quelado, seguida de cromatografia de exclusão molecular. Nessa etapa, as massas moleculares e raios hidrodinâmicos (RH) foram estimados, tanto por cromatografia de exclusão molecular quanto em gel nativo, revelando que Xyl_Xcc e Xyl_Bad se apresentam diméricas enquanto Xyl_LCr monomérica. Subseqüentemente, foram realizados testes de atividade em diferentes condições (pHs e temperaturas), para mapear condições ótimas de reação. A atividade ótima de ambas Xyl_Xcc e Xyl_Bad foi ao redor do pH 5,5, com temperaturas ótimas girando em torno de 60°C. Xyl_LCr se mostrou sem atividade. Além disso, o monitoramento da estabilidade térmica das XIs foi realizado através de espalhamento de raios-X a baixo ângulo (SAXS) e espectroscopia de dicroísmo circular (CD). As estabilidades térmicas da estrutura secundária e da estrutura terciária como um todo parecem aumentadas com a elevação do pH. Entretanto, isso não condiz com perfil de atividade dessas enzimas, visto que a atividade ótima se apresentou deslocada para valores de pHs ácidos. Modelos de baixa resolução obtidos por SAXS foram alinhados e sobrepostos às estruturas de alta resolução de proteínas homólogas, revelando um bom ajuste da forma tetramérica para Xyl_Bad e Xyl_Xcc e monomérica para Xyl_LCr. Portanto, levanta-se a hipótese da dissociação do tetrâmero em dímeros, possivelmente causado pela interação (mecânica) com o sistema de emaranhados do gel nativo e com os poros da coluna de exclusão molecular. Foram obtidos cristais de Xyl_Bad e Xyl_Xcc, e esses foram submetidos à difração de raios-X, revelando a presença de um domínio conservado na maioria das XIs reportadas, formado por um barril α⁄β (N-terminal). As estruturas estão em fase avançada de refinamento. Ao final, são propostos estudos futuros que complementem os resultados apresentados, e que poderão comprovar as hipóteses criadas a partir deste trabalho. / The demand for fuels based on renewable resources is high these days and tends to increase considerably in the future. In Brazil, biofuels industries mainly produce ethanol from sugarcane. The lignocellulosic biomass, including crop residues, forest residues, urban solids, is explored as a secondary high potential for biofuels production, in the same category of products, thus eliminating the competing uses. To make the production of sugarcane secondgeneration ethanol economically sustainable, it is essential to use the hemicellulose fraction of the biomass, which corresponds from 20% to 25%, the main component represented by xylose. Saccharomyces cerevisiae doesnt ferment xylose, however, xylulose may befermented. Therefore the research and study of enzymes that carry out the conversion of xylose to xylulose (in synergistic fermentation conditions) become very important with regard to the use of hemicellulose in second-generation ethanol production. Xylose isomerases (XI) from three different microorganisms (Xanthomonas campestris pv. Campestris [Xyl_Xcc], Bifidobacterium adolescentis [Xyl_Bad] and Lactobacillus crispatus [Xyl_Lcr]) are the target of this project. From the genomic content of these three organisms, gene amplification of the xylA gene (encoding XI) was performed, via Ligand / Ligation Independent Cloning (LIC) and cloning in LIC adapted pPROEX HTA expression vector , with overexpression in Escherichia coli BL21 (DE3). The XIs were then extracted and purified by affinity metal quelate chromatography, followed by size exclusion chromatography. At that time, the molecular weight and hydrodynamic radius (RH) were estimated both by size exclusion chromatography and native gel, suggesting that Xyl_Xcc and Xyl_Bad were as dimers in solution, while Xyl_Lcr as monomer. Subsequently, activity assays were performed in different conditions (pH and temperature), to find out the optimum reaction conditions. The optimal activity of both Xyl_Xcc and Xyl_Bad was around pH 5.5, with optimum temperatures hovering around 60°C. Xyl_Lcr showed no activity. Furthermore, monitoring the thermalstability of XIs was performed by small angle X-ray scattering (SAXS) and circular dichroism spectroscopy (CD). The thermal stabilities of the secondary structure and tertiary structure as a whole appear increased with increasing pH. However, this does not match with the activity profiles of these enzymes, since they showed optimal activity shifted to acidic pHs. SAXS low-resolution models were aligned and superimposed on high resolution structures of homologous proteins, revealing a concordance of the tetrameric form of Xyl_Xcc and Xyl_Bad in solution and monomeric form of Xyl_Lcr. Thus arises the possibility of dissociation of tetramer into dimers, possibly caused by interaction (mechanical) system with the tangles of native gel and pores of molecular exclusion column. Crystals were obtained from Xyl_Bad and Xyl_Xcc, and these were subjected to X-ray diffraction to generate high resolution structures, revealing the presence of a conserved domain in the most reported XIs, consisting of a α⁄ β barrel (N-terminus). The structures are in an advanced stage of refinement. Finally, future studies are proposed to complement the results presented, which may prove the hypotheses generated from this work.
4

Estudos biofísicos e estruturais de xilose isomerases para produção de etanol de segunda geração / Structural and biophysical studies of xylose isomerases for production of second generation ethanol

Caio Vinicius dos Reis 03 August 2012 (has links)
A demanda por combustíveis baseados em recursos renováveis é alta nos dias de hoje e tende a aumentar bastante no futuro. No Brasil, indústrias de biocombustíveis produzem principalmente etanol a partir cana-de-açúcar. A biomassa lignocelulósica, compreendendo resíduos de culturas, resíduos florestais, sólidos urbanos, é explorada como um elevado potencial secundário na produção de biocombustíveis, mesmo na categoria de subprodutos, eliminando assim os usos competitivos. Para tornar a produção de etanol de segunda geração a partir da cana-de-açúcar economicamente sustentável, é imprescindível utilizar fração hemicelulósica da biomassa, o que corresponde de 20% a 25%, sendo a xilose seu principal componente. Saccharomyces cerevisiae não fermenta xilose, entretanto, xilulose pode ser fermentada. Portanto a busca e o estudo de enzimas que procedem com a conversão de xilose em xilulose (em condições sinérgicas às da fermentação alcoólica) se torna de extrema importância no que se refere ao aproveitamento da hemicelulose para a geração de etanol de segunda-geração. Xilose isomerases (XI) de três microorganismos diferentes (de Xanthomonas campestris pv. Campestris [Xyl_Xcc], Bifidobacterium adolescentis [Xyl_Bad] e de Lactobacillus crispatus [Xyl_LCr]) são o objeto de estudo deste projeto. A partir do conteúdo genômico desses três microorganismos, foi realizada a amplificação do gene xylA (que codifica para XI), via Clonagem Independente de Ligação/Ligase (do inglês, LIC) e clonagem em vetor de expressão pPROEX HTa adaptado para LIC, e superexpressão em Escherichia coli BL21 (DE3). As XIs foram então extraídas e purificadas por cromatografia de afinidade com metal quelado, seguida de cromatografia de exclusão molecular. Nessa etapa, as massas moleculares e raios hidrodinâmicos (RH) foram estimados, tanto por cromatografia de exclusão molecular quanto em gel nativo, revelando que Xyl_Xcc e Xyl_Bad se apresentam diméricas enquanto Xyl_LCr monomérica. Subseqüentemente, foram realizados testes de atividade em diferentes condições (pHs e temperaturas), para mapear condições ótimas de reação. A atividade ótima de ambas Xyl_Xcc e Xyl_Bad foi ao redor do pH 5,5, com temperaturas ótimas girando em torno de 60°C. Xyl_LCr se mostrou sem atividade. Além disso, o monitoramento da estabilidade térmica das XIs foi realizado através de espalhamento de raios-X a baixo ângulo (SAXS) e espectroscopia de dicroísmo circular (CD). As estabilidades térmicas da estrutura secundária e da estrutura terciária como um todo parecem aumentadas com a elevação do pH. Entretanto, isso não condiz com perfil de atividade dessas enzimas, visto que a atividade ótima se apresentou deslocada para valores de pHs ácidos. Modelos de baixa resolução obtidos por SAXS foram alinhados e sobrepostos às estruturas de alta resolução de proteínas homólogas, revelando um bom ajuste da forma tetramérica para Xyl_Bad e Xyl_Xcc e monomérica para Xyl_LCr. Portanto, levanta-se a hipótese da dissociação do tetrâmero em dímeros, possivelmente causado pela interação (mecânica) com o sistema de emaranhados do gel nativo e com os poros da coluna de exclusão molecular. Foram obtidos cristais de Xyl_Bad e Xyl_Xcc, e esses foram submetidos à difração de raios-X, revelando a presença de um domínio conservado na maioria das XIs reportadas, formado por um barril α⁄β (N-terminal). As estruturas estão em fase avançada de refinamento. Ao final, são propostos estudos futuros que complementem os resultados apresentados, e que poderão comprovar as hipóteses criadas a partir deste trabalho. / The demand for fuels based on renewable resources is high these days and tends to increase considerably in the future. In Brazil, biofuels industries mainly produce ethanol from sugarcane. The lignocellulosic biomass, including crop residues, forest residues, urban solids, is explored as a secondary high potential for biofuels production, in the same category of products, thus eliminating the competing uses. To make the production of sugarcane secondgeneration ethanol economically sustainable, it is essential to use the hemicellulose fraction of the biomass, which corresponds from 20% to 25%, the main component represented by xylose. Saccharomyces cerevisiae doesnt ferment xylose, however, xylulose may befermented. Therefore the research and study of enzymes that carry out the conversion of xylose to xylulose (in synergistic fermentation conditions) become very important with regard to the use of hemicellulose in second-generation ethanol production. Xylose isomerases (XI) from three different microorganisms (Xanthomonas campestris pv. Campestris [Xyl_Xcc], Bifidobacterium adolescentis [Xyl_Bad] and Lactobacillus crispatus [Xyl_Lcr]) are the target of this project. From the genomic content of these three organisms, gene amplification of the xylA gene (encoding XI) was performed, via Ligand / Ligation Independent Cloning (LIC) and cloning in LIC adapted pPROEX HTA expression vector , with overexpression in Escherichia coli BL21 (DE3). The XIs were then extracted and purified by affinity metal quelate chromatography, followed by size exclusion chromatography. At that time, the molecular weight and hydrodynamic radius (RH) were estimated both by size exclusion chromatography and native gel, suggesting that Xyl_Xcc and Xyl_Bad were as dimers in solution, while Xyl_Lcr as monomer. Subsequently, activity assays were performed in different conditions (pH and temperature), to find out the optimum reaction conditions. The optimal activity of both Xyl_Xcc and Xyl_Bad was around pH 5.5, with optimum temperatures hovering around 60°C. Xyl_Lcr showed no activity. Furthermore, monitoring the thermalstability of XIs was performed by small angle X-ray scattering (SAXS) and circular dichroism spectroscopy (CD). The thermal stabilities of the secondary structure and tertiary structure as a whole appear increased with increasing pH. However, this does not match with the activity profiles of these enzymes, since they showed optimal activity shifted to acidic pHs. SAXS low-resolution models were aligned and superimposed on high resolution structures of homologous proteins, revealing a concordance of the tetrameric form of Xyl_Xcc and Xyl_Bad in solution and monomeric form of Xyl_Lcr. Thus arises the possibility of dissociation of tetramer into dimers, possibly caused by interaction (mechanical) system with the tangles of native gel and pores of molecular exclusion column. Crystals were obtained from Xyl_Bad and Xyl_Xcc, and these were subjected to X-ray diffraction to generate high resolution structures, revealing the presence of a conserved domain in the most reported XIs, consisting of a α⁄ β barrel (N-terminus). The structures are in an advanced stage of refinement. Finally, future studies are proposed to complement the results presented, which may prove the hypotheses generated from this work.
5

Synbiot encapsulation employing a pea protein-alginate matrix

Klemmer, Karla Jenna 29 March 2011
Probiotics and prebiotic are becoming increasingly important to consumers to alleviate issues surrounding gut health, despite the lack of definitive efficacy studies to support health claims. The addition of both probiotics and prebiotics to foods is challenging due to the harsh environmental conditions within the food itself and during transit through the gastrointestinal (GI) tract. To circumvent these challenges encapsulation technology is being explored to protect sensitive ingredients and to control their release within the lower intestines thereby maximizing the health benefiting effects. The overall goal of this research was to design a protein delivery capsule using phase separated pea protein isolate (PPI)-alginate (AL) mixtures for the entrapment of the synbiot which includes the probiotics, Bifidobacterium adolescentis, and the prebiotic, fructooligosaccharides (FOS), such that the capsule design provides highly effective protection and release within the GI tract. Research was carried out in three studies.<p> In study 1, PPIn (native isolate) and AL interactions were studied in dilute aqueous solutions as a function of pH and biopolymer mixing ratio. Turbidimetric analysis and electrophoretic mobility during an acid titration was used to determine conditions where phase separation occurred. Critical structure forming events associated with the formation of soluble and insoluble complexes in a 1:1 PPIn-AL mixture were found to occur at pH 5.00 and 2.98, respectively, with optimal interactions occurring at pH 2.10. As the PPIn-AL ratio increased, critical pH values shifted towards higher pH until a mixing ratio between 4:1 and 8:1was reached, above which structure formation became independent of the ratios through to ratios of 20:1. Electrophoretic mobility measurements showed a similar trend, where the isoelectric point (pI) shifted from pH 4.00 (homogeneous PPIn) to pH 1.55 (1:1 PPIn-AL). As the ratio increased towards 8:1 PPIn-AL, net neutrality values shifted to higher pHs (~3.80) before becoming constant at higher ratios. Maximum coacervate formation occurred at a mixing ratio of 4:1. Based on these findings, capsule design by segregative phase separation was only used in future studies, due to the acidic nature associated with associative phase separation.<p> In study 2, capsule formation using a native and commercial PPI was studied, and showed no difference between the two formulations during challenge experiments in simulated gastric juice (SGJ). As a result study 3 focused on optimization and characterization of capsules prepared using the commercial PPI. Capsule designs were investigated as a function of protein concentration, prebiotic level, and extrusion conditions (20 vs. 27 G needle) in order to determine protective ability for B. adolescentis within SGJ. Capsule designs were also measured in terms of protein and prebiotic retention during the encapsulation process, geometric mean diameter and size distribution, swelling behaviour and release characteristics within simulated intestinal fluids (SIF). All capsules provided adequate protection over the 2 h duration within SGJ. Capsule breakdown and release was similar for all designs within SIF, with a release mechanism believed to be tied to enzymatic degradation of the PPI material within the wall matrix and/or the amount of excessive Na+ present in the SIF. Capsule size was found to be dependent only on the needle gauge used in the extrusion process. Swelling behaviour of the capsules with SGJ was also found to be dependent only on the protein concentration, where capsules shrank once immersed in SGJ.<p> A 2.0% PPI-0.5% AL capsule without FOS and extruded through a 20 G needle represents the best and most cost effective design for entrapping, protecting and delivering probiotic bacteria. Future work to establish the role FOS could play post-release as the entrapping probiotics colonize the GI tract, and the protective effect of the capsules wall on FOS structure during transit is recommended.
6

Synbiot encapsulation employing a pea protein-alginate matrix

Klemmer, Karla Jenna 29 March 2011 (has links)
Probiotics and prebiotic are becoming increasingly important to consumers to alleviate issues surrounding gut health, despite the lack of definitive efficacy studies to support health claims. The addition of both probiotics and prebiotics to foods is challenging due to the harsh environmental conditions within the food itself and during transit through the gastrointestinal (GI) tract. To circumvent these challenges encapsulation technology is being explored to protect sensitive ingredients and to control their release within the lower intestines thereby maximizing the health benefiting effects. The overall goal of this research was to design a protein delivery capsule using phase separated pea protein isolate (PPI)-alginate (AL) mixtures for the entrapment of the synbiot which includes the probiotics, Bifidobacterium adolescentis, and the prebiotic, fructooligosaccharides (FOS), such that the capsule design provides highly effective protection and release within the GI tract. Research was carried out in three studies.<p> In study 1, PPIn (native isolate) and AL interactions were studied in dilute aqueous solutions as a function of pH and biopolymer mixing ratio. Turbidimetric analysis and electrophoretic mobility during an acid titration was used to determine conditions where phase separation occurred. Critical structure forming events associated with the formation of soluble and insoluble complexes in a 1:1 PPIn-AL mixture were found to occur at pH 5.00 and 2.98, respectively, with optimal interactions occurring at pH 2.10. As the PPIn-AL ratio increased, critical pH values shifted towards higher pH until a mixing ratio between 4:1 and 8:1was reached, above which structure formation became independent of the ratios through to ratios of 20:1. Electrophoretic mobility measurements showed a similar trend, where the isoelectric point (pI) shifted from pH 4.00 (homogeneous PPIn) to pH 1.55 (1:1 PPIn-AL). As the ratio increased towards 8:1 PPIn-AL, net neutrality values shifted to higher pHs (~3.80) before becoming constant at higher ratios. Maximum coacervate formation occurred at a mixing ratio of 4:1. Based on these findings, capsule design by segregative phase separation was only used in future studies, due to the acidic nature associated with associative phase separation.<p> In study 2, capsule formation using a native and commercial PPI was studied, and showed no difference between the two formulations during challenge experiments in simulated gastric juice (SGJ). As a result study 3 focused on optimization and characterization of capsules prepared using the commercial PPI. Capsule designs were investigated as a function of protein concentration, prebiotic level, and extrusion conditions (20 vs. 27 G needle) in order to determine protective ability for B. adolescentis within SGJ. Capsule designs were also measured in terms of protein and prebiotic retention during the encapsulation process, geometric mean diameter and size distribution, swelling behaviour and release characteristics within simulated intestinal fluids (SIF). All capsules provided adequate protection over the 2 h duration within SGJ. Capsule breakdown and release was similar for all designs within SIF, with a release mechanism believed to be tied to enzymatic degradation of the PPI material within the wall matrix and/or the amount of excessive Na+ present in the SIF. Capsule size was found to be dependent only on the needle gauge used in the extrusion process. Swelling behaviour of the capsules with SGJ was also found to be dependent only on the protein concentration, where capsules shrank once immersed in SGJ.<p> A 2.0% PPI-0.5% AL capsule without FOS and extruded through a 20 G needle represents the best and most cost effective design for entrapping, protecting and delivering probiotic bacteria. Future work to establish the role FOS could play post-release as the entrapping probiotics colonize the GI tract, and the protective effect of the capsules wall on FOS structure during transit is recommended.

Page generated in 0.124 seconds