• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation Model of Ray Patterning in Zebrafish Caudal Fins

Tweedle, Valerie 22 August 2012 (has links)
The bony fin rays of the zebrafish caudal fin are a convenient system for studying bone morphogenesis and patterning. Joints and bifurcations in fin rays follow predictable spatial patterns, though the mechanisms underlying these patterns are not well understood. We developed simulation models to explore ray pattern formation mechanisms in growing fins. In all models, the fin ray growth rates are based on quantitative experimental data. The different models simulate ray joint formation and bifurcation formation using different hypothetical mechanisms. In the most plausible model, ray joint and bifurcation formation result from the accumulation of two substances, arbitrarily named J and B. Model parameters were optimized to find the best fit between model output and quantitative experimental data on fin ray patterns. The model will be tested in the future by evaluating how well it can predict fin ray patterns in different fin shapes, mutant zebrafish fins, and other fish species.
2

Simulation Model of Ray Patterning in Zebrafish Caudal Fins

Tweedle, Valerie January 2012 (has links)
The bony fin rays of the zebrafish caudal fin are a convenient system for studying bone morphogenesis and patterning. Joints and bifurcations in fin rays follow predictable spatial patterns, though the mechanisms underlying these patterns are not well understood. We developed simulation models to explore ray pattern formation mechanisms in growing fins. In all models, the fin ray growth rates are based on quantitative experimental data. The different models simulate ray joint formation and bifurcation formation using different hypothetical mechanisms. In the most plausible model, ray joint and bifurcation formation result from the accumulation of two substances, arbitrarily named J and B. Model parameters were optimized to find the best fit between model output and quantitative experimental data on fin ray patterns. The model will be tested in the future by evaluating how well it can predict fin ray patterns in different fin shapes, mutant zebrafish fins, and other fish species.

Page generated in 0.109 seconds