Spelling suggestions: "subject:"gig cypress multionational preserve"" "subject:"gig cypress multionational ireserve""
1 |
CHANGES IN PHYSICAL PROPERTIES OF THE PEAT SOIL MATRIX ACROSS A SALINITY GRADIENT IN THE EVERGLADES: IMPLICATIONS FOR ACCELERATING PEAT COLLAPSE DURING SEA LEVEL RISEUnknown Date (has links)
Peatlands are areas with an accumulated layer of peat soil that are considered global stores of carbon, acting as a net sink of carbon dioxide and a net source of methane. Recent studies in coastal peatlands have shown how that a rise in sea level may contribute to the degradation of peat soils due to the inland progression of the saltwater interface, which may result in physical changes within the peat matrix that may eventually result in peat collapse. For example, earlier studies in boreal peat soils described the effect of pore dilation as a result of increased salinity in peat soils, while recent studies in Everglades peat soils showed specific salinity thresholds that may represent a permanent loss of the structural integrity of the peat matrix that may represent early stages of peat collapse. While most of these previous efforts have focused on drivers, recent work has also explored conceptual models to better understand the mechanisms inducing peat collapse. However, few datasets exists that consistently compare differences in physical properties under different in‐situ salinity conditions. In this study differences in the physical properties of peat soils across a salinity gradient along the western edge of Big Cypress National Preserve are investigated to test how differences in salinity may induce physical changes in the soil matrix. The physical properties targeted for this study include porosity, hydraulic conductivity, and carbon content. Measurements are conducted at the laboratory scale using peat cores and monoliths collected at selected locations to investigate: 1) how overall soil physical properties change spatially over a salinity gradient at the km scale moving from permanently saline to freshwater conditions; and 2) how physical properties change spatially at specific sites as dependant on vegetation boundaries and proximity to collapsed soils. This study has implications for better understanding the potential relation between physical changes of the soil matrix and the phenomena of peat collapse in the Everglades as saltwater intrusion progresses inward and alters freshwater ecosystems. Furthermore, a better mechanistic understanding of the peat collapse phenomenon can potentially help mitigate its occurrence. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2021. / FAU Electronic Theses and Dissertations Collection
|
2 |
Sociocultural Complexities of Ecosystem Restoration: Remaking Identity, Landscape and Belonging in the Florida EvergladesGarvoille, Rebecca I. 26 March 2013 (has links)
The Florida Everglades is a highly diverse socionatural landscape that historically spanned much of the south Florida peninsula. Today, the Florida Everglades is an iconic but highly contested conservation landscape. It is the site of one of the world’s largest publicly funded ecological restoration programs, estimated to cost over $8 billion (U.S. GAO 2007), and it is home to over two million acres of federally protected lands, including the Big Cypress National Preserve and Everglades National Park. However, local people’s values, practices and histories overlap and often conflict with the global and eco-centric values linked to Everglades environmental conservation efforts, sparking environmental conflict.
My dissertation research examined the cultural politics of nature associated with two Everglades conservation and ecological restoration projects: 1) the creation and stewardship of the Big Cypress National Preserve, and 2) the Tamiami Trail project at the northern boundary of Everglades National Park. Using multiple research methods including ethnographic fieldwork, archival research, participant observation, surveys and semi-structured interviews, I documented how these two projects have shaped environmental claims-making strategies to Everglades nature on the part of environmental NGOs, the National Park Service and local white outdoorsmen. In particular, I examined the emergence of an oppositional white identity called the Gladesmen Culture. My findings include the following: 1) just as different forms of nature are historically produced, contingent and power-laden, so too are different claims to Everglades nature; 2) identity politics are an integral dimension of Everglades environmental conflicts; and 3) the Big Cypress region’s history and contemporary conflicts are shaped by the broader political economy of development in south Florida.
My dissertation concluded that identity politics, class and property relations have played a key, although not always obvious, role in shaping Everglades history and environmental claims-making, and that they continue to influence contemporary Everglades environmental conflicts.
|
3 |
Habitat and Seasonal Distribution of the North American River Otter (Lontra canadensis) and Vertebrate Species Assemblages in Two Protected Areas of the Florida EvergladesHamilton, Catherine Faye 01 November 2014 (has links)
The Florida Everglades ecosystem is threatened by human development, increased pollution, freshwater scarcity, and invasive species; factors that have negatively impacted the Everglades and native species health and populations. Man-made canals and levies have redirected the natural flow of fresh water from Lake Okeechobee into the Florida Everglades, starving central and south Florida ecosystems of necessary fresh water and nutrients. Through the efforts of the Comprehensive Everglades Restoration Project (CERP), freshwater is being redirected back into central and south Florida, returning the sheet flow of water back into the Everglades. Monitoring species abundance in the Everglades is a beneficial conservational tool for assessing restoration efforts from CERP. As a semi-aquatic apex predator, river otters (Lontra canadensis) are a useful health bio-indicator for the Florida Everglades. In order to conduct future population studies of river otters in the Florida Everglades, it must first be ascertained where they can be found and what time of year they are most likely to be sighted. For this study, Moultrie infrared game cameras were used to photograph the presence or absence of river otters within the five main habitats in the Everglades; the pinelands, hardwood hammock, cypress swamp, marsh prairie, and mangrove estuary at two protected areas in the Florida Everglades (Big Cypress National Preserve and Fakahatchee Strand State Park). River otters were most frequently sighted in the hardwood hammock habitat, but were also found in the cypress swamp. The large majority of river otter sightings occurred during dry season, which is thought to be a function of restricted water availability and aquatic mobility. Future population studies of river otters would be most productive in the hardwood hammock and cypress swamp habitats during dry season. Game camera images along with field opportunistic sightings, resulted in a variety of species documented. This provided valuable information of species richness and distribution within and amongst the habitats. The hardwood hammock was found to be the most species rich habitat, having over half the species observed in the study in this habitat. The Aves class was the most abundantly observed in the Everglades, and was most frequently sighted during the dry season. As a refuge for migratory birds, the Everglades house the majority of bird species during the winter months, which occur during dry season. The Aves class was most frequently sighted in the pinelands habitat during dry season. This habitat, being the highest in elevation and therefore the driest, shows a stronger resemblance to most northern bird habitats then does the water-saturated wetlands found throughout the Everglades. The mangrove estuary was the most commonly occurring outlier, having the least species overlap when compared to the other habitats. All other habitats in the Everglades are freshwater wetlands, while the mangrove estuary is a brackish environment, which limits the species that are unable to tolerate saline conditions. Further studies of species abundance throughout the Everglades will aid in monitoring CERP restoration efforts over time.
|
Page generated in 0.1684 seconds